
Mario Leclerc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1520286/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of energetic disorder in bulk heterojunction organic solar cells. Energy and Environmental Science, 2022, 15, 2806-2818.	30.8	57
2	Strategies for the synthesis of water-soluble conjugated polymers. Trends in Chemistry, 2022, 4, 714-725.	8.5	9
3	Direct (Hetero)arylation: A Tool for Low-Cost and Eco-Friendly Organic Photovoltaics. ACS Applied Polymer Materials, 2021, 3, 2-13.	4.4	45
4	Water-Processable Self-Doped Conducting Polymers via Direct (Hetero)arylation Polymerization. Macromolecules, 2021, 54, 5464-5472.	4.8	22
5	Insights into Bulkâ€Heterojunction Organic Solar Cells Processed from Green Solvent. Solar Rrl, 2021, 5, 2100213.	5.8	30
6	Theoretical Insights into Optoelectronic Properties of Non-Fullerene Acceptors for the Design of Organic Photovoltaics. ACS Applied Energy Materials, 2021, 4, 11090-11100.	5.1	6
7	Low-Bandgap Non-fullerene Acceptors Enabling High-Performance Organic Solar Cells. ACS Energy Letters, 2021, 6, 598-608.	17.4	175
8	Biosourced Vanillin-Based Building Blocks for Organic Electronic Materials. Journal of Organic Chemistry, 2021, 86, 16548-16557.	3.2	6
9	Direct (hetero)arylation polymerization: toward defect-free conjugated polymers. Polymer Journal, 2020, 52, 13-20.	2.7	34
10	Modeling and implementation of tandem polymer solar cells using wideâ€bandgap front cells. , 2020, 2, 131-142.		9
11	Reducing Voltage Losses in the A-DA′D-A Acceptor-Based Organic Solar Cells. CheM, 2020, 6, 2147-2161.	11.7	150
12	Elucidating the impact of molecular weight on morphology, charge transport, photophysics and performance of all-polymer solar cells. Journal of Materials Chemistry A, 2020, 8, 21070-21083.	10.3	23
13	Bioinspiration in light harvesting and catalysis. Nature Reviews Materials, 2020, 5, 828-846.	48.7	136
14	Structural and Photophysical Templating of Conjugated Polyelectrolytes with Single-Stranded DNA. Chemistry of Materials, 2020, 32, 7347-7362.	6.7	4
15	A-DA′D-A non-fullerene acceptors for high-performance organic solar cells. Science China Chemistry, 2020, 63, 1352-1366.	8.2	226
16	The Next 100 Years of Polymer Science. Macromolecular Chemistry and Physics, 2020, 221, 2000216.	2.2	69
17	Slot-Die-Coated Ternary Organic Photovoltaics for Indoor Light Recycling. ACS Applied Materials & Interfaces, 2020, 12, 43684-43693.	8.0	25
18	Optimized synthesis of fluorinated dithienyl-diketopyrrolopyrroles and new copolymers obtained via direct heteroarylation polymerization. Materials Chemistry Frontiers, 2020, 4, 2040-2046	5.9	13

#	Article	IF	CITATIONS
19	Water Compatible Direct (Hetero)arylation Polymerization of PPDT2FBT: A Pathway Towards Large cale Production of Organic Solar Cells. Asian Journal of Organic Chemistry, 2020, 9, 1318-1325.	2.7	17
20	Recent Progress on Indoor Organic Photovoltaics: From Molecular Design to Production Scale. ACS Energy Letters, 2020, 5, 1186-1197.	17.4	131
21	Pyrene Diimide Based π-Conjugated Copolymer and Single-Walled Carbon Nanotube Composites for Lithium-Ion Batteries. Chemistry of Materials, 2019, 31, 8764-8773.	6.7	22
22	Organic Solar Cells – Special Issue. Chemical Record, 2019, 19, 961-961.	5.8	2
23	Fused Benzothiadiazole: A Building Block for nâ€Type Organic Acceptor to Achieve Highâ€Performance Organic Solar Cells. Advanced Materials, 2019, 31, e1807577.	21.0	297
24	Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule, 2019, 3, 1140-1151.	24.0	4,052
25	Airâ€Processed, Stable Organic Solar Cells with High Power Conversion Efficiency of 7.41%. Small, 2019, 15, e1804671.	10.0	19
26	Cï£;H Activation as a Shortcut to Conjugated Polymer Synthesis. Macromolecular Rapid Communications, 2019, 40, e1800512.	3.9	42
27	Direct (Hetero)Arylation Polymerization for the Preparation of Conjugated Polymers. , 2019, , 195-238.		1
28	Theoretical Calculations for Highly Selective Direct Heteroarylation Polymerization: New Nitrile-Substituted Dithienyl-Diketopyrrolopyrrole-Based Polymers. Molecules, 2018, 23, 2324.	3.8	7
29	Mechanistic Origin of β-Defect Formation in Thiophene-Based Polymers Prepared by Direct (Hetero)arylation. Macromolecules, 2018, 51, 8100-8113.	4.8	29
30	Pyromellitic Diimide-Based Copolymers and Their Application as Stable Cathode Active Materials in Lithium and Sodium-Ion Batteries. Chemistry of Materials, 2018, 30, 6821-6830.	6.7	29
31	Poly(naphthalene diimide- <i>alt</i> -bithiophene) Prepared by Direct (Hetero)arylation Polymerization for Efficient All-Polymer Solar Cells. Chemistry of Materials, 2018, 30, 5353-5361.	6.7	49
32	Development of quinoxaline based polymers for photovoltaic applications. Journal of Materials Chemistry C, 2017, 5, 1858-1879.	5.5	103
33	Robust Direct (Hetero)arylation Polymerization in Biphasic Conditions. Journal of the American Chemical Society, 2017, 139, 2816-2824.	13.7	68
34	Random D–A1–D–A2terpolymers based on benzodithiophene, thiadiazole[3,4-e]isoindole-5,7-dione and thieno[3,4-c]pyrrole-4,6-dione for efficient polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 6638-6647.	10.3	21
35	High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole. Energy and Environmental Science, 2017, 10, 1443-1455.	30.8	84
36	Direct heteroarylation polymerization: guidelines for defect-free conjugated polymers. Chemical Science, 2017, 8, 3913-3925.	7.4	70

#	Article	IF	CITATIONS
37	A Study of the Degree of Fluorination in Regioregular Poly(3-hexylthiophene). Macromolecules, 2017, 50, 162-174.	4.8	30
38	Salt-induced thermochromism of a conjugated polyelectrolyte. Physical Chemistry Chemical Physics, 2017, 19, 28853-28866.	2.8	12
39	New Fluorinated Dithienyldiketopyrrolopyrrole Monomers and Polymers for Organic Electronics. Macromolecules, 2017, 50, 7080-7090.	4.8	50
40	Photovoltaic device performance of highly regioregular fluorinated poly(3-hexylthiophene). Organic Electronics, 2017, 50, 115-120.	2.6	7
41	Poly(5-alkyl-thieno[3,4-c]pyrrole-4,6-dione): a study of ï€-conjugated redox polymers as anode materials in lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 18088-18094.	10.3	27
42	Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene and Fluorinated Dithieno-2,1,3-benzothiadiazole by Direct Heteroarylation. Macromolecules, 2017, 50, 4658-4667.	4.8	28
43	New Processable Phenanthridinoneâ€Based Polymers for Organic Solar Cell Applications. Advanced Energy Materials, 2016, 6, 1502094.	19.5	42
44	Structural Analysis of Poly(3â€hexylthiophene) Prepared via Direct Heteroarylation Polymerization. Macromolecular Chemistry and Physics, 2016, 217, 1493-1500.	2.2	45
45	Direct (Hetero)arylation Polymerization: Trends and Perspectives. Journal of the American Chemical Society, 2016, 138, 10056-10071.	13.7	211
46	Direct (Hetero)arylation Polymerization: Simplicity for Conjugated Polymer Synthesis. Chemical Reviews, 2016, 116, 14225-14274.	47.7	402
47	Increasing Polymer Solar Cell Fill Factor by Trapâ€Filling with F4â€TCNQ at Parts Per Thousand Concentration. Advanced Materials, 2016, 28, 6491-6496.	21.0	85
48	Realizing the full potential of conjugated polymers: innovation in polymer synthesis. Materials Horizons, 2016, 3, 11-20.	12.2	111
49	Thieno, Furo, and Selenopheno[3,4â€ <i>c</i>]pyrroleâ€4,6â€dione Copolymers: Airâ€Processed Polymer Solar Cells with Power Conversion Efficiency up to 7.1%. Advanced Energy Materials, 2015, 5, 1501213.	19.5	20
50	Is there a photostable conjugated polymer for efficient solar cells?. Polymer Degradation and Stability, 2015, 112, 175-184.	5.8	38
51	Photoinduced Dynamics of Charge Separation: From Photosynthesis to Polymer–Fullerene Bulk Heterojunctions. Journal of Physical Chemistry B, 2015, 119, 7407-7416.	2.6	48
52	Electroactive and Photoactive Poly[Isoindigo <i>-alt-</i> EDOT] Synthesized Using Direct (Hetero)Arylation Polymerization in Batch and in Continuous Flow. Chemistry of Materials, 2015, 27, 2137-2143.	6.7	75
53	En Route to Defect-Free Polythiophene Derivatives by Direct Heteroarylation Polymerization. Macromolecules, 2015, 48, 5614-5620.	4.8	74
54	Synthesis, characterization and device optimisation of new poly(benzo[1,2-b:4,5-bâ€2]dithiophene-alt-thieno[3,4-d]thiazole) derivatives for solar cell applications. Polymer Chemistry, 2015, 6, 3956-3961.	3.9	6

#	Article	IF	CITATIONS
55	Smallâ€Bandgap Polymer Solar Cells with Unprecedented Shortâ€Circuit Current Density and High Fill Factor. Advanced Materials, 2015, 27, 3318-3324.	21.0	294
56	Elucidating the Impact of Molecular Packing and Device Architecture on the Performance of Nanostructured Perylene Diimide Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 8687-8698.	8.0	26
57	Conjugated Polymers à la Carte from Time-Controlled Direct (Hetero)Arylation Polymerization. ACS Macro Letters, 2015, 4, 21-24.	4.8	101
58	A high mobility DPP-based polymer obtained via direct (hetero)arylation polymerization. Polymer Chemistry, 2015, 6, 278-282.	3.9	76
59	Enhanced Power Conversion Efficiency of Low Bandâ€Gap Polymer Solar Cells by Insertion of Optimized Binary Processing Additives. Advanced Energy Materials, 2014, 4, 1300835.	19.5	40
60	How Photoinduced Crosslinking Under Operating Conditions Can Reduce PCDTBTâ€Based Solar Cell Efficiency and then Stabilize It. Advanced Energy Materials, 2014, 4, 1301530.	19.5	39
61	Charge Transfer: Electronic Structure of Fullerene Heterodimer in Bulkâ€Heterojunction Blends (Adv.) Tj ETQq1 1	0.784314 19.5	rgBT /Over
62	Electronic Structure of Fullerene Heterodimer in Bulkâ€Heterojunction Blends. Advanced Energy Materials, 2014, 4, 1301517.	19.5	30
63	Highly efficient thieno[3,4-c]pyrrole-4,6-dione-based solar cells processed from non-chlorinated solvent. Organic Electronics, 2014, 15, 543-548.	2.6	40
64	Effect of processing additive on morphology and charge extraction in bulk-heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 15052-15057.	10.3	39
65	Qualitative Analysis of Bulk-Heterojunction Solar Cells without Device Fabrication: An Elegant and Contactless Method. Journal of the American Chemical Society, 2014, 136, 10949-10955.	13.7	28
66	Thiocarbonyl Substitution in 1,4-Dithioketopyrrolopyrrole and Thienopyrroledithione Derivatives: An Experimental and Theoretical Study. Journal of Physical Chemistry C, 2014, 118, 3953-3959.	3.1	19
67	Enhanced Efficiency of Single and Tandem Organic Solar Cells Incorporating a Diketopyrrolopyrroleâ€Based Lowâ€Bandgap Polymer by Utilizing Combined ZnO/Polyelectrolyte Electronâ€Transport Layers. Advanced Materials, 2013, 25, 4783-4788.	21.0	111
68	PCDTBT: en route for low cost plastic solar cells. Journal of Materials Chemistry A, 2013, 1, 11097.	10.3	171
69	Langmuir–Blodgett Films of Amphiphilic Thieno[3,4- <i>c</i>]pyrrole-4,6-dione-Based Alternating Copolymers. Macromolecules, 2013, 46, 6408-6418.	4.8	22
70	Impact of UVâ€Visible Light on the Morphological and Photochemical Behavior of a Lowâ€Bandgap Poly(2,7â€Carbazole) Derivative for Use in Highâ€Performance Solar Cells. Advanced Energy Materials, 2013, 3, 478-487.	19.5	75
71	lmide/amide based π-conjugated polymers for organic electronics. Progress in Polymer Science, 2013, 38, 1815-1831.	24.7	68
72	High open-circuit voltage solar cells using a new thieno[3,4-c] pyrrole-4,6-dione based copolymer. Synthetic Metals, 2013, 182, 9-12.	3.9	9

#	Article	IF	CITATIONS
73	Impact of DNA Sequence and Oligonucleotide Length on a Polythiopheneâ€Based Fluorescent DNA Biosensor. Macromolecular Bioscience, 2013, 13, 717-722.	4.1	15
74	Synthesis of new n-type isoindigo copolymers. Polymer Chemistry, 2013, 4, 1836.	3.9	91
75	Direct heteroarylation of β-protected dithienosilole and dithienogermole monomers with thieno[3,4-c]pyrrole-4,6-dione and furo[3,4-c]pyrrole-4,6-dione. Polymer Chemistry, 2013, 4, 5252.	3.9	47
76	Thieno[3,4â€ <i>c</i>]pyrroleâ€4,6â€dioneâ€Based Polymers for Optoelectronic Applications. Macromolecular Chemistry and Physics, 2013, 214, 7-16.	2.2	57
77	Polythiophene Biosensor for Rapid Detection of Microbial Particles in Water. ACS Applied Materials & Interfaces, 2013, 5, 4544-4548.	8.0	26
78	Accessing New DPPâ€Based Copolymers by Direct Heteroarylation Polymerization. Macromolecular Chemistry and Physics, 2013, 214, 453-457.	2.2	50
79	Direct (Hetero)Arylation: A New Tool for Polymer Chemists. Accounts of Chemical Research, 2013, 46, 1597-1605.	15.6	412
80	Highly-efficient charge separation and polaron delocalization in polymer–fullerene bulk-heterojunctions: a comparative multi-frequency EPR and DFT study. Physical Chemistry Chemical Physics, 2013, 15, 9562.	2.8	135
81	Additiveâ€Free Bulkâ€Heterojuction Solar Cells with Enhanced Power Conversion Efficiency, Comprising a Newly Designed Selenopheneâ€Thienopyrrolodione Copolymer. Advanced Functional Materials, 2013, 23, 1297-1304.	14.9	93
82	Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells. Organic Electronics, 2012, 13, 2639-2646.	2.6	92
83	Thieno-, Furo-, and Selenopheno[3,4- <i>c</i>)pyrrole-4,6-dione Copolymers: Effect of the Heteroatom on the Electrooptical Properties. Macromolecules, 2012, 45, 6906-6914.	4.8	79
84	Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells. Organic Electronics, 2012, 13, 1736-1741.	2.6	103
85	Donor–acceptor alternating copolymers containing thienopyrroledione electron accepting units: preparation, redox behaviour, and application to photovoltaic cells. Polymer Chemistry, 2012, 3, 2355.	3.9	24
86	Low-Cost Synthesis and Physical Characterization of Thieno[3,4- <i>c</i>]pyrrole-4,6-dione-Based Polymers. Journal of Organic Chemistry, 2012, 77, 8167-8173.	3.2	93
87	Easy and versatile synthesis of new poly(thieno[3,4-d]thiazole)s. Polymer Chemistry, 2012, 3, 2875.	3.9	47
88	Slow geminateâ€chargeâ€pair recombination dynamics at polymer: Fullerene heterojunctions in efficient organic solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1395-1404.	2.1	12
89	Solution Processed Organic Tandem Solar Cells. Energy Procedia, 2012, 31, 159-166.	1.8	7
90	Bithiopheneimide–Dithienosilole/Dithienogermole Copolymers for Efficient Solar Cells: Information from Structure–Property–Device Performance Correlations and Comparison to Thieno[3,4- <i>c</i>]pyrrole-4,6-dione Analogues. Journal of the American Chemical Society, 2012, 134, 18427-18439.	13.7	257

#	Article	IF	CITATIONS
91	Intensity Dependent Femtosecond Dynamics in a PBDTTPD-Based Solar Cell Material. Journal of Physical Chemistry Letters, 2012, 3, 2952-2958.	4.6	28
92	Effects of the Molecular Weight and the Sideâ€Chain Length on the Photovoltaic Performance of Dithienosilole/Thienopyrrolodione Copolymers. Advanced Functional Materials, 2012, 22, 2345-2351.	14.9	223
93	Work Function Control of Interfacial Buffer Layers for Efficient and Airâ€Stable Inverted Lowâ€Bandgap Organic Photovoltaics. Advanced Energy Materials, 2012, 2, 361-368.	19.5	56
94	A New Terthiopheneâ€Thienopyrrolodione Copolymerâ€Based Bulk Heterojunction Solar Cell with High Openâ€Circuit Voltage. Advanced Energy Materials, 2012, 2, 1397-1403.	19.5	98
95	Ultrafast relaxation of charge-transfer excitons in low-bandgap conjugated copolymers. Chemical Science, 2012, 3, 2270.	7.4	44
96	Breaking Down the Problem: Optical Transitions, Electronic Structure, and Photoconductivity in Conjugated Polymer PCDTBT and in Its Separate Building Blocks. Journal of Physical Chemistry C, 2012, 116, 11456-11469.	3.1	96
97	High Open-Circuit Voltage Solar Cells Based on New Thieno[3,4-c]pyrrole-4,6-dione and 2,7-Carbazole Copolymers. Macromolecules, 2012, 45, 1833-1838.	4.8	52
98	High-efficiency inverted solar cells based on a low bandgap polymer with excellent air stability. Solar Energy Materials and Solar Cells, 2012, 96, 155-159.	6.2	89
99	Synthesis of 5â€Alkyl[3,4â€ <i>c</i>]thienopyrroleâ€4,6â€dioneâ€Based Polymers by Direct Heteroarylation. Angewandte Chemie - International Edition, 2012, 51, 2068-2071.	13.8	232
100	The development of a silica nanoparticle-based label-free DNA biosensor. Nanoscale, 2011, 3, 3747.	5.6	14
101	Amplification Strategy Using Aggregates of Ferrocene-Containing Cationic Polythiophene for Sensitive and Specific Electrochemical Detection of DNA. Analytical Chemistry, 2011, 83, 8086-8092.	6.5	32
102	New conjugated polymers for plastic solar cells. Energy and Environmental Science, 2011, 4, 1225.	30.8	257
103	Green energy from a blue polymer. Nature Materials, 2011, 10, 409-410.	27.5	55
104	Effect of mixed solvents on PCDTBT:PC70BM based solar cells. Organic Electronics, 2011, 12, 1788-1793.	2.6	82
105	Processable Low-Bandgap Polymers for Photovoltaic Applications. Chemistry of Materials, 2011, 23, 456-469.	6.7	790
106	Bulk Heterojunction Solar Cells Using Thieno[3,4- <i>c</i>]pyrrole-4,6-dione and Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]silole Copolymer with a Power Conversion Efficiency of 7.3%. Journal of the American Chemical Society, 2011, 133, 4250-4253.	13.7	1,047
107	Synthesis and Photovoltaic Properties of Poly(dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]germole) Derivatives. Macromolecules, 2011, 44, 7188-7193.	4.8	94
108	Synthesis and Characterization of New Poly(thieno[3,4- <i>d</i>]thiazole) Derivatives for Photovoltaic Applications. Macromolecules, 2011, 44, 7184-7187.	4.8	26

#	Article	IF	CITATIONS
109	Synthesis and Characterization of 5-Octylthieno[3,4- <i>c</i>]pyrrole-4,6-dione Derivatives As New Monomers for Conjugated Copolymers. Organic Letters, 2011, 13, 38-41.	4.6	73
110	Conducting polymers: Efficient thermoelectric materials. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 467-475.	2.1	310
111	Rational Design of Poly(2,7â€Carbazole) Derivatives for Photovoltaic Applications. Macromolecular Theory and Simulations, 2011, 20, 13-18.	1.4	31
112	Synthesis and Characterization of New Thieno[3,4â€ɛ]pyrroleâ€4,6â€dione Derivatives for Photovoltaic Applications. Advanced Functional Materials, 2011, 21, 718-728.	14.9	170
113	High Efficiency Polymer Solar Cells with Long Operating Lifetimes. Advanced Energy Materials, 2011, 1, 491-494.	19.5	395
114	Energy level alignments at poly[N-9′′-hepta-decanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] o polymer interfaces. Chemical Physics Letters, 2011, 503, 101-104.	n me tal ar	1d20
115	Charge carrier photogeneration and decay dynamics in the poly(2,7-carbazole) copolymer PCDTBT and in bulk heterojunction composites with <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><<mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< td=""><td>3.2 /> < mml:m</td><td>117 in>70</td></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	3.2 /> < mml:m	117 in>70
116	Physical Review B, 2010, 81, . A Thieno[3,4- <i>c</i>]pyrrole-4,6-dione-Based Copolymer for Efficient Solar Cells. Journal of the American Chemical Society, 2010, 132, 5330-5331.	13.7	747
117	A Thermally Stable Semiconducting Polymer. Advanced Materials, 2010, 22, 1253-1257.	21.0	165
118	Solarâ€Energy Production and Energyâ€Efficient Lighting: Photovoltaic Devices and Whiteâ€Lightâ€Emitting Diodes Using Poly(2,7â€fluorene), Poly(2,7â€carbazole), and Poly(2,7â€dibenzosilole) Derivatives. Advanced Materials, 2010, 22, E6-E27.	21.0	220
119	A New Dithienylbenzotriazoleâ€Based Poly(2,7 arbazole) for Efficient Photovoltaics. Macromolecular Chemistry and Physics, 2010, 211, 2026-2033.	2.2	49
120	New Low Bandgap Dithienylbenzothiadiazole Vinylene Based Copolymers: Synthesis and Photovoltaic Properties. Macromolecular Rapid Communications, 2010, 31, 391-398.	3.9	44
121	Synthesis of New Pyridazineâ€Based Monomers and Related Polymers for Photovoltaic Applications. Macromolecular Rapid Communications, 2010, 31, 1090-1094.	3.9	27
122	Solvent effect and device optimization of diketopyrrolopyrrole and carbazole copolymer based solar cells. Organic Electronics, 2010, 11, 1053-1058.	2.6	40
123	Synthesis and characterization of soluble indolo[3,2-b]carbazole derivatives for organic field-effect transistors. Organic Electronics, 2010, 11, 1649-1659.	2.6	59
124	Structural, electronic, and optical properties of novel indolocarbazole-based conjugated derivatives. Computational and Theoretical Chemistry, 2010, 962, 33-37.	1.5	7
125	Bulk heterojunction solar cells based on a low-bandgap carbazole-diketopyrrolopyrrole copolymer. Applied Physics Letters, 2010, 97, 203303.	3.3	47
126	Exciton Formation, Relaxation, and Decay in PCDTBT. Journal of the American Chemical Society, 2010, 132, 17459-17470.	13.7	190

#	Article	IF	CITATIONS
127	Germafluorenes: New Heterocycles for Plastic Electronics. Macromolecules, 2010, 43, 2328-2333.	4.8	116
128	Polycarbazoles for plastic electronics. Polymer Chemistry, 2010, 1, 127-136.	3.9	172
129	Highly efficient polycarbazole-based organic photovoltaic devices. Applied Physics Letters, 2009, 95, 063304.	3.3	107
130	High efficiency polymer solar cells with internal quantum efficiency approaching 100%. , 2009, , .		3
131	New Copolymers Based on Acenaphto[1,2-b]thieno[3,4-e]Pyrazine for Transistor and Solar Cell Applications. Materials Research Society Symposia Proceedings, 2009, 1197, 13.	0.1	0
132	Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photonics, 2009, 3, 297-302.	31.4	3,903
133	Synthesis and Characterization of New Low-Bandgap Diketopyrrolopyrrole-Based Copolymers. Macromolecules, 2009, 42, 6361-6365.	4.8	162
134	A High-Mobility Low-Bandgap Poly(2,7-carbazole) Derivative for Photovoltaic Applications. Macromolecules, 2009, 42, 2891-2894.	4.8	232
135	Electrical and Thermoelectric Properties of Poly(2,7-Carbazole) Derivatives. Chemistry of Materials, 2009, 21, 751-757.	6.7	171
136	Highly efficient organic solar cells based on a poly(2,7-carbazole) derivative. Journal of Materials Chemistry, 2009, 19, 5351.	6.7	185
137	Multicolored Electrochromic Cells Based On Poly(2,7-Carbazole) Derivatives For Adaptive Camouflage. Chemistry of Materials, 2009, 21, 1504-1513.	6.7	158
138	New indolo[3,2-b]carbazole derivatives for field-effect transistor applications. Journal of Materials Chemistry, 2009, 19, 2921.	6.7	80
139	2008 Macromolecular Science and Engineering Division Award Lecture — Conjugated polymers: From micro-electronics to genomics. Canadian Journal of Chemistry, 2009, 87, 1201-1208.	1.1	6
140	Fluorescence Signal Amplification for Ultrasensitive DNA Detection. Reviews in Fluorescence, 2009, , 179-197.	0.5	4
141	Structure and Segmental Motions in a Substituted Polythiophene: A Solid tate NMR Study. Macromolecular Chemistry and Physics, 2008, 209, 2455-2462.	2.2	14
142	Poly(2,7-carbazole)s: Structureâ^'Property Relationships. Accounts of Chemical Research, 2008, 41, 1110-1119.	15.6	455
143	Optical Detection of DNA and Proteins with Cationic Polythiophenes. Accounts of Chemical Research, 2008, 41, 168-178.	15.6	492
144	Charge Transport, Photovoltaic, and Thermoelectric Properties of Poly(2,7â€Carbazole) and Poly(Indolo[3,2â€ <i>b</i>]Carbazole) Derivatives. Polymer Reviews, 2008, 48, 432-462.	10.9	133

#	Article	IF	CITATIONS
145	Poly(2,7-carbazole)s and Related Polymers. Advances in Polymer Science, 2008, , 99-124.	0.8	57
146	Toward a Rational Design of Poly(2,7-Carbazole) Derivatives for Solar Cells. Journal of the American Chemical Society, 2008, 130, 732-742.	13.7	1,328
147	Organometallic and Conjugated Organic Polymers Held Together by Strong Electrostatic Interactions to Form Luminescent Hybrid Materials. Inorganic Chemistry, 2008, 47, 11720-11733.	4.0	11
148	Characterization of Superlighting Polymerâ^'DNA Aggregates:  A Fluorescence and Light Scattering Study. Langmuir, 2007, 23, 258-264.	3.5	22
149	Synthesis and Thermoelectric Properties of Polycarbazole, Polyindolocarbazole, and Polydiindolocarbazole Derivatives. Chemistry of Materials, 2007, 19, 2128-2138.	6.7	119
150	Synthesis, Characterization, and Application of Indolo[3,2-b]carbazole Semiconductors. Journal of the American Chemical Society, 2007, 129, 9125-9136.	13.7	208
151	A Lowâ€Bandgap Poly(2,7 arbazole) Derivative for Use in Highâ€Performance Solar Cells. Advanced Materials, 2007, 19, 2295-2300.	21.0	1,211
152	Poly(2,7â€carbazole) Derivatives as Semiconductors for Organic Thinâ€Film Transistors. Macromolecular Rapid Communications, 2007, 28, 1798-1803.	3.9	56
153	A New Poly(2,7â€Ðibenzosilole) Derivative in Polymer Solar Cells. Macromolecular Rapid Communications, 2007, 28, 2176-2179.	3.9	150
154	30 Years of Conducting Polymers. Macromolecular Rapid Communications, 2007, 28, 1675-1675.	3.9	8
155	Investigation of the structure, the optical properties, and the photophysics of some indolocarbazoles having terminal aromatic rings. Computational and Theoretical Chemistry, 2007, 824, 15-22.	1.5	11
156	Prion strain discrimination using luminescent conjugated polymers. Nature Methods, 2007, 4, 1023-1030.	19.0	261
157	Reagentless Ultrasensitive Specific DNA Array Detection Based on Responsive Polymeric Biochips. Analytical Chemistry, 2006, 78, 7896-7899.	6.5	61
158	Label-Free Electrochemical Detection of Protein Based on a Ferrocene-Bearing Cationic Polythiophene and Aptamer. Analytical Chemistry, 2006, 78, 4727-4731.	6.5	170
159	Optical and Photophysical Properties of Indolocarbazole Derivatives. Journal of Physical Chemistry A, 2006, 110, 13696-13704.	2.5	50
160	Toward the Development of New Textile/Plastic Electrochromic Cells Using Triphenylamine-Based Copolymers. Chemistry of Materials, 2006, 18, 4011-4018.	6.7	143
161	Emission energies and photophysical properties of ladder oligo(p-aniline)s. Computational and Theoretical Chemistry, 2006, 760, 147-152.	1.5	14
162	Investigation of a Fluorescence Signal Amplification Mechanism Used for the Direct Molecular Detection of Nucleic Acids. Journal of Fluorescence, 2006, 16, 259-265.	2.5	47

#	Article	IF	CITATIONS
163	Optical, Electrochemical, Magnetic, and Conductive Properties of New Polyindolocarbazoles and Polydiindolocarbazoles. Macromolecular Chemistry and Physics, 2006, 207, 166-174.	2.2	63
164	Optical, Electrochemical, Magnetic, and Conductive Properties of New Poly(indolocarbazole-alt-bithiophene)s. Macromolecular Chemistry and Physics, 2006, 207, 175-182.	2.2	40
165	Synthesis of 2,7-Carbazolenevinylene-Based Copolymers and Characterization of Their Photovoltaic Properties. Advanced Functional Materials, 2006, 16, 1694-1704.	14.9	116
166	Protein Detecting Arrays Based on Cationic Polythiophene–DNA-Aptamer Complexes. Advanced Materials, 2006, 18, 2703-2707.	21.0	113
167	Highly soluble poly(2,7-carbazolenevinylene) for thermoelectrical applications: From theory to experiment. Reactive and Functional Polymers, 2005, 65, 23-36.	4.1	59
168	2,7-Carbazolenevinylene-Based Oligomer Thin-Film Transistors: High Mobility Through Structural Ordering. Advanced Functional Materials, 2005, 15, 1671-1682.	14.9	139
169	Ferrocene-Functionalized Cationic Polythiophene for the Label-Free Electrochemical Detection of DNA. Advanced Materials, 2005, 17, 1251-1254.	21.0	120
170	Polycarbazoles: 25 Years of Progress. Macromolecular Rapid Communications, 2005, 26, 761-778.	3.9	597
171	Optical Sensors Based on Hybrid DNA/Conjugated Polymer Complexes. Chemistry - A European Journal, 2005, 11, 1718-1724.	3.3	175
172	Synthesis of N-Octyl-2,7-dimethoxy-1,8-bistrimethylsilyl-3,6-dibromocarbazole ChemInform, 2005, 36, no.	0.0	0
173	Detection of target DNA using fluorescent cationic polymer and peptide nucleic acid probes on solid support. BMC Biotechnology, 2005, 5, 10.	3.3	59
174	Towards the Synthesis of Ladder Oligo(p-aniline)s. Synlett, 2005, 2005, 1223-1234.	1.8	2
175	New Conjugated Polymers Derived from Carbazole as Thermoelectric Materials. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	2
176	Structural Study of the Thermochromic Transition in Poly(2,5-dialkyl-p-phenyleneethynylene)s. Macromolecules, 2005, 38, 9631-9637.	4.8	21
177	A Theoretical, Spectroscopic, and Photophysical Study of 2,7-Carbazolenevinylene-Based Conjugated Derivatives. Journal of Physical Chemistry A, 2005, 109, 6953-6959.	2.5	109
178	Photophysics and Solvent-Induced Aggregation of 2,7-Carbazole-Based Conjugated Polymers. Macromolecules, 2005, 38, 880-887.	4.8	95
179	A first principles calculations and experimental study of the ground- and excited-state properties of ladder oligo(p-aniline)s. Journal of Chemical Physics, 2005, 122, 104303.	3.0	29
180	Direct Molecular Detection of Nucleic Acids by Fluorescence Signal Amplification. Journal of the American Chemical Society, 2005, 127, 12673-12676.	13.7	255

#	Article	IF	CITATIONS
181	Affinitychromic Polythiophenes: A Novel Bio-Photonic Tool for High-Throughput Screening and Diagnostics. Synlett, 2004, 2004, 0380-0387.	1.8	26
182	Spectroscopic and photophysical properties of carbazole-based triads. Canadian Journal of Chemistry, 2004, 82, 1280-1288.	1.1	17
183	Synthesis of <i>N</i> â€Octylâ€2,7â€dimethoxyâ€1,8â€bistrimethylsilylâ€3,6â€dibromocarbazole. Synthetic Communications, 2004, 34, 2737-2742.	2.1	5
184	Functional polythiophenes as optical chemo- and biosensors. Tetrahedron, 2004, 60, 11169-11173.	1.9	75
185	Affinitychromic Polythiophenes: A Novel Bio-Photonic Tool for High-Throughput Screening and Diagnostics. ChemInform, 2004, 35, no.	0.0	0
186	Ground and excited state properties of carbazole-based dyads: correlation with their respective absorption and fluorescence spectra. Computational and Theoretical Chemistry, 2004, 679, 9-15.	1.5	37
187	Synthesis of Diindolocarbazoles by Cadogan Reaction:Â Route to Ladder Oligo(p-aniline)s. Journal of Organic Chemistry, 2004, 69, 5705-5711.	3.2	99
188	Organic Microelectronics:  Design, Synthesis, and Characterization of 6,12-Dimethylindolo[3,2-b]Carbazoles. Chemistry of Materials, 2004, 16, 4386-4388.	6.7	177
189	Optical Sensors Based on Hybrid Aptamer/Conjugated Polymer Complexes. Journal of the American Chemical Society, 2004, 126, 1384-1387.	13.7	519
190	Syntheses and Characterization of Electroactive and Photoactive 2,7-Carbazolenevinylene-Based Conjugated Oligomers and Polymers. Chemistry of Materials, 2004, 16, 4619-4626.	6.7	164
191	Fluorescent Polymeric Transducer for the Rapid, Simple, and Specific Detection of Nucleic Acids at the Zeptomole Level. Journal of the American Chemical Society, 2004, 126, 4240-4244.	13.7	344
192	Absorption and emission properties of carbazole-based dyads studied from experimental and theoretical investigations. Synthetic Metals, 2004, 146, 99-108.	3.9	20
193	DNA-Sensors Using a Water-Soluble, Cationic Poly(thiophene) Derivative. ACS Symposium Series, 2004, , 359-367.	0.5	5
194	Synthesis of Diindolocarbazoles by Ullmann Reaction:  A Rapid Route to Ladder Oligo(p-aniline)s. Organic Letters, 2004, 6, 3413-3416.	4.6	111
195	Steady-state and time-resolved studies of 2,7-carbazole-based conjugated polymers in solution and as thin films: determination of their solid state fluorescence quantum efficiencies. Chemical Physics Letters, 2003, 370, 799-804.	2.6	74
196	Study of excited state properties of oligofluorenes by the singles configuration interaction (CIS) theoretical approach. Computational and Theoretical Chemistry, 2003, 625, 141-148.	1.5	33
197	New Colorimetric and Fluorometric Chemosensor Based on a Cationic Polythiophene Derivative for Iodide-Specific Detection. Journal of the American Chemical Society, 2003, 125, 4412-4413.	13.7	290
198	Optical and Electrical Properties of π-Conjugated Polymers Based on Electron-Rich 3,6-Dimethoxy-9,9-dihexylfluorene Unit. Macromolecules, 2003, 36, 8986-8991.	4.8	34

#	Article	IF	CITATIONS
199	Solvatochromic Properties of 2,7-Carbazole-Based Conjugated Polymers. Macromolecules, 2003, 36, 4624-4630.	4.8	80
200	Blue light-emitting devices from new conjugated poly(N-substituted-2,7-carbazole) derivatives. Applied Physics Letters, 2002, 80, 341-343.	3.3	89
201	RedÂgreenÂblue light-emitting diodes containing fluorene-based copolymers. Journal of Optics, 2002, 4, S252-S257.	1.5	21
202	Spectral and Photophysical Properties of Fluorene-Based Polyesters in Solution and in the Solid State. Macromolecules, 2002, 35, 8889-8895.	4.8	27
203	Spectroscopic Study of Intermolecular Interactions in Various Oligofluorenes:Â Precursors of Light-Emitting Polymers. Journal of Physical Chemistry B, 2002, 106, 8959-8966.	2.6	30
204	A Versatile Approach to Affinitychromic Polythiophenes. Journal of the American Chemical Society, 2002, 124, 12463-12468.	13.7	63
205	2,7-Carbazole-Based Conjugated Polymers for Blue, Green, and Red Light Emission. Macromolecules, 2002, 35, 8413-8417.	4.8	187
206	Electrochemical, Conductive, and Magnetic Properties of 2,7-Carbazole-Based Conjugated Polymers. Macromolecules, 2002, 35, 2122-2128.	4.8	221
207	Electronic spectroscopy and photophysics of phenylene–fluorene derivatives as well as their corresponding polyesters. Synthetic Metals, 2002, 126, 43-51.	3.9	19
208	Colorimetric and Fluorometric Detection of Nucleic Acids Using Cationic Polythiophene Derivatives. Angewandte Chemie, 2002, 114, 1618-1621.	2.0	82
209	Colorimetric and Fluorometric Detection of Nucleic Acids Using Cationic Polythiophene Derivatives. Angewandte Chemie - International Edition, 2002, 41, 1548-1551.	13.8	472
210	Blue-Light-Emitting Conjugated Polymers Derived From 2,7-Carbazoles. Macromolecular Rapid Communications, 2002, 23, 1032-1036.	3.9	70
211	Syntheses of Conjugated Polymers Derived from N-Alkyl-2,7-carbazoles. Macromolecules, 2001, 34, 4680-4682.	4.8	246
212	Spectroscopic and Photophysical Properties of Thiopheneâ^'Fluorene Oligomers as well as Their Corresponding Polyesters. Macromolecules, 2001, 34, 2288-2297.	4.8	48
213	Polyfluorenes: Twenty years of progress. Journal of Polymer Science Part A, 2001, 39, 2867-2873.	2.3	600
214	Synthesis and characterization of a novel polyester derived from substituted terfluorene. Macromolecular Rapid Communications, 2000, 21, 1013-1018.	3.9	42
215	Electrochemical characterization of monolayers of a biotinylated polythiophene: towards the development of polymeric biosensors. Chemical Communications, 2000, , 1847-1848.	4.1	50
216	Thermochromic and Solvatochromic Conjugated Polymers by Design. Macromolecules, 2000, 33, 8252-8257.	4.8	48

#	Article	IF	CITATIONS
217	Molecular Design and Characterization of Chromic Polyfluorene Derivatives. Macromolecules, 2000, 33, 5874-5879.	4.8	109
218	Light-Emitting Diodes from Fluorene-Based π-Conjugated Polymers. Chemistry of Materials, 2000, 12, 1931-1936.	6.7	252
219	Theoretical and Experimental Investigations of the Spectroscopic and Photophysical Properties of Fluorene-Phenylene and Fluorene-Thiophene Derivatives:Â Precursors of Light-Emitting Polymers. Journal of Physical Chemistry B, 2000, 104, 9118-9125.	2.6	151
220	HF/3-21G* ab initio calculations on methoxy-substituted bithiophenes. Computational and Theoretical Chemistry, 1999, 467, 259-273.	1.5	20
221	Controlled ionochromism with polythiophenes bearing crown ether side chains. Journal of Materials Chemistry, 1999, 9, 2133-2138.	6.7	56
222	Intermolecular Interactions in Conjugated Oligothiophenes. 3. Optical and Photophysical Properties of Quaterthiophene and Substituted Quaterthiophenes in Various Environments. Journal of Physical Chemistry A, 1999, 103, 3864-3875.	2.5	74
223	Intermolecular Interactions in Conjugated Oligothiophenes. 2. Quantum Chemical Calculations Performed on Crystalline Structures of Terthiophene and Substituted Terthiophenes. Journal of Physical Chemistry A, 1999, 103, 803-811.	2.5	48
224	New Base-Doped Polyfluorene Derivatives. Macromolecules, 1999, 32, 3306-3313.	4.8	95
225	Intermolecular Interactions in Conjugated Oligothiophenes. 1. Optical Spectra of Terthiophene and Substituted Terthiophenes Recorded in Various Environments. Journal of Physical Chemistry A, 1999, 103, 795-802.	2.5	65
226	Conformational Analysis (ab Initio HF/3-21G*) and Optical Properties of Symmetrically Disubstituted Terthiophenes. Journal of Physical Chemistry A, 1998, 102, 5142-5149.	2.5	76
227	Molecular Structure and Conformational Analysis of Some Alkylthio-Substituted Bithiophenes. Theoretical and Experimental Investigation. Journal of Physical Chemistry A, 1998, 102, 2700-2707.	2.5	28
228	Responsive Supramolecular Polythiophene Assemblies. Journal of the American Chemical Society, 1998, 120, 5274-5278.	13.7	97
229	Optical and electrical properties of fluorene-based pi-conjugated polymers. Canadian Journal of Chemistry, 1998, 76, 1571-1577.	1.1	48
230	Novel Dual Photochromism in Polythiophene Derivatives. Macromolecules, 1997, 30, 4347-4352.	4.8	82
231	Synthesis, Characterization, and Processing of New Electroactive and Photoactive Polyesters Derived from Oligothiophenes. Chemistry of Materials, 1997, 9, 2815-2821.	6.7	63
232	Highly Conducting Water-Soluble Polythiophene Derivatives. Chemistry of Materials, 1997, 9, 2902-2905.	6.7	130
233	New Well-Defined Poly(2,7-fluorene) Derivatives:Â Photoluminescence and Base Doping. Macromolecules, 1997, 30, 7686-7691.	4.8	585
234	Electrical and optical properties of Processable Polythiophene Derivatives: Structure-Property relationships. Advanced Materials, 1997, 9, 1087-1094.	21.0	207

#	Article	IF	CITATIONS
235	Processing-induced chromism in thin films of polythiophene derivatives. Macromolecular Rapid Communications, 1997, 18, 733-737.	3.9	7
236	Towards a theoretical design of thermochromic polythiophenes. Chemical Physics Letters, 1997, 275, 533-539.	2.6	73
237	Ionochromic and Thermochromic Phenomena in a Regioregular Polythiophene Derivative Bearing Oligo(oxyethylene) Side Chains. Chemistry of Materials, 1996, 8, 2843-2849.	6.7	114
238	Functionalized regioregular polythiophenes: towards the development of biochromic sensors. Chemical Communications, 1996, , 2761-2762.	4.1	68
239	Chromic Phenomena in Regioregular and Nonregioregular Polythiophene Derivatives. Chemistry of Materials, 1995, 7, 1390-1396.	6.7	138
240	Synthesis and Characterization of Polyaniline Derivatives: Poly(2-alkoxyanilines) and Poly(2,5-dialkoxyanilines). Chemistry of Materials, 1995, 7, 33-42.	6.7	159
241	Ionochromic effects in regioregular ether-substituted polythiophenes. Journal of the Chemical Society Chemical Communications, 1995, , 2293-2294.	2.0	40
242	Synthesis, Characterization, and Langmuir-Blodgett Films of Fluorinated Polythiophenes. Macromolecules, 1994, 27, 1847-1851.	4.8	60
243	Thermochromic Properties of Polythiophene Derivatives: Formation of Localized and Delocalized Conformational Defects. Chemistry of Materials, 1994, 6, 620-624.	6.7	57
244	Potentialities of Semiempirical Calculations (AMPAC and INDO/S) in Determining the Conformation and Electronic Properties of 2,2'-Bithiophene: A New Joint Experimental and Theoretical Approach. The Journal of Physical Chemistry, 1994, 98, 9450-9456.	2.9	75
245	Thermochromic properties of polythiophenes: structural aspects. Die Makromolekulare Chemie, 1993, 194, 869-877.	1.1	115
246	Thermochromic properties of polythiophenes: Cooperative effects. Die Makromolekulare Chemie Rapid Communications, 1993, 14, 461-464.	1.1	16
247	Thermochromic properties of polythiophenes: oligomers vs. polymers. Journal of the Chemical Society Chemical Communications, 1993, , 962-963.	2.0	16
248	Design of novel electroactive polybithiophene derivatives. Macromolecules, 1993, 26, 2501-2507.	4.8	77
249	Stabilization and characterization of pernigraniline salt: the "acid-doped" form of fully oxidized polyanilines. Macromolecules, 1992, 25, 2145-2150.	4.8	96
250	Rod-to-coil transition in alkoxy-substituted polythiophenes. Macromolecules, 1992, 25, 2141-2144.	4.8	105
251	Design of new conducting 3,4-disubstituted polythiophenes. Journal of the Chemical Society Chemical Communications, 1990, , 273.	2.0	54
252	Structural analysis of poly(3-alkylthiophene)s. Die Makromolekulare Chemie, 1989, 190, 3105-3116.	1.1	332

#	Article	IF	CITATIONS
253	Synthesis and characterization of poly(alkylanilines). Macromolecules, 1989, 22, 649-653.	4.8	295
254	Transport properties of substituted poly(acetylenes). Macromolecules, 1987, 20, 2153-2159.	4.8	33
255	Theoretical analysis of model compounds of substituted poly(acetylenes): conformation versus electronic properties. Polymer Bulletin, 1987, 18, 159.	3.3	5
256	Properties of iodine complexes of monosubstituted polyacetylenes. Journal of Polymer Science, Part B: Polymer Physics, 1987, 25, 423-433.	2.1	46
257	Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. , 0, .		1