Veronika Engert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/151980/publications.pdf

Version: 2024-02-01

50 papers

3,962 citations

32 h-index 197736 49 g-index

56 all docs 56
docs citations

56 times ranked 5363 citing authors

#	Article	IF	CITATIONS
1	Plasma oxytocin is modulated by mental training, but does not mediate its stress-buffering effect. Psychoneuroendocrinology, 2022, 141, 105734.	1.3	5
2	Mind-wandering content differentially translates from lab to daily life and relates to subjective stress experience. Psychological Research, 2021, 85, 649-659.	1.0	14
3	Contemplative Mental Training Reduces Hair Glucocorticoid Levels in a Randomized Clinical Trial. Psychosomatic Medicine, 2021, 83, 894-905.	1.3	12
4	Resilience and personality as predictors of the biological stress load during the first wave of the Covid-19 pandemic in Germany. Translational Psychiatry, 2021, 11, 443.	2.4	20
5	EEG revealed improved vigilance regulation after stress exposure under Nx4 –a randomized, placebo-controlled, double-blind, cross-over trial. IBRO Neuroscience Reports, 2021, 11, 175-182.	0.7	3
6	Contemplative mental training increases serum BDNF levels with differing success depending on practice type and training sequence. Psychoneuroendocrinology, 2020, 119, 105010.	1.3	0
7	Psychosocial Factors in Disease and Treatment—A Call for the Biopsychosocial Model. JAMA Psychiatry, 2020, 77, 996.	6.0	24
8	Association of Short-term Change in Leukocyte Telomere Length With Cortical Thickness and Outcomes of Mental Training Among Healthy Adults. JAMA Network Open, 2019, 2, e199687.	2.8	40
9	Only vulnerable adults show change in chronic low-grade inflammation after contemplative mental training: evidence from a randomized clinical trial. Scientific Reports, 2019, 9, 19323.	1.6	9
10	Embodied stress: The physiological resonance of psychosocial stress. Psychoneuroendocrinology, 2019, 105, 138-146.	1.3	39
11	It matters what you practice: differential training effects on subjective experience, behavior, brain and body in the ReSource Project. Current Opinion in Psychology, 2019, 28, 151-158.	2.5	104
12	How to disentangle psychobiological stress reactivity and recovery: A comparison of model-based and non-compartmental analyses of cortisol concentrations. Psychoneuroendocrinology, 2018, 90, 194-210.	1.3	46
13	Cortisol stress resonance in the laboratory is associated with inter-couple diurnal cortisol covariation in daily life. Hormones and Behavior, 2018, 98, 183-190.	1.0	15
14	Exploring the multidimensional complex systems structure of the stress response and its relation to health and sleep outcomes. Brain, Behavior, and Immunity, 2018, 73, 390-402.	2.0	27
15	Specific reduction in cortisol stress reactivity after social but not attention-based mental training. Science Advances, 2017, 3, e1700495.	4.7	102
16	Cortisol stress resonance in the laboratory is associated with inter-couple diurnal cortisol covariation in daily life. Psychoneuroendocrinology, 2017, 83, 1.	1.3	10
17	Boosting recovery rather than buffering reactivity: Higher stress-induced oxytocin secretion is associated with increased cortisol reactivity and faster vagal recovery after acute psychosocial stress. Psychoneuroendocrinology, 2016, 74, 111-120.	1.3	74
18	Psychological, endocrine, and neural correlates of attentional bias in subclinical depression. Anxiety, Stress and Coping, 2016, 29, 479-496.	1.7	16

#	Article	IF	CITATIONS
19	The interaction of acute and chronic stress impairs model-based behavioral control. Psychoneuroendocrinology, 2015, 53, 268-280.	1.3	88
20	The effects of stress and affiliation on social decision-making: Investigating the tend-and-befriend pattern. Psychoneuroendocrinology, 2015, 62, 138-148.	1.3	64
21	Exploring the Use of Thermal Infrared Imaging in Human Stress Research. PLoS ONE, 2014, 9, e90782.	1.1	100
22	Mind your thoughts: Associations between self-generated thoughts and stress-induced and baseline levels of cortisol and alpha-amylase. Biological Psychology, 2014, 103, 283-291.	1.1	66
23	Psychological, endocrine and neural responses to social evaluation in subclinical depression. Social Cognitive and Affective Neuroscience, 2014, 9, 1632-1644.	1.5	36
24	Cortisol increase in empathic stress is modulated by emotional closeness and observation modality. Psychoneuroendocrinology, 2014, 45, 192-201.	1.3	96
25	Stressâ€induced reduction in hippocampal volume and connectivity with the ventromedial prefrontal cortex are related to maladaptive responses to stressful military service. Human Brain Mapping, 2013, 34, 2808-2816.	1.9	109
26	Differentiating anticipatory from reactive cortisol responses to psychosocial stress. Psychoneuroendocrinology, 2013, 38, 1328-1337.	1.3	91
27	Effects of panel sex composition on the physiological stress responses to psychosocial stress in healthy young men and women. Biological Psychology, 2012, 89, 99-106.	1.1	37
28	Investigation into the cross-correlation of salivary cortisol and alpha-amylase responses to psychological stress. Psychoneuroendocrinology, 2011, 36, 1294-1302.	1.3	164
29	Increased cortisol awakening response and afternoon/evening cortisol output in healthy young adults with low early life parental care. Psychopharmacology, 2011, 214, 261-268.	1.5	50
30	Hippocampal activation during a cognitive task is associated with subsequent neuroendocrine and cognitive responses to psychological stress. Hippocampus, 2010, 20, 323-334.	0.9	58
31	Effect of sex and estrogen therapy on the aging brain. Menopause, 2010, 17, 846-851.	0.8	32
32	Perceived early-life maternal care and the cortisol response to repeated psychosocial stress. Journal of Psychiatry and Neuroscience, 2010, 35, 370-377.	1.4	64
33	Investigating the Association Between Early Life Parental Care and Stress Responsivity in Adulthood. Developmental Neuropsychology, 2010, 35, 570-581.	1.0	38
34	Cortisol Awakening Response and Hippocampal Volume: Vulnerability for Major Depressive Disorder?. Biological Psychiatry, 2010, 68, 847-853.	0.7	80
35	Neural correlates of processing stressful information: An event-related fMRI study. Brain Research, 2009, 1293, 49-60.	1.1	146
36	Behavioral response to methylphenidate challenge: Influence of early life parental care. Developmental Psychobiology, 2009, 51, 408-416.	0.9	17

#	Article	lF	Citations
37	The brain and the stress axis: The neural correlates of cortisol regulation in response to stress. Neurolmage, 2009, 47, 864-871.	2.1	507
38	The role of sex and gender socialization in stress reactivity Developmental Psychology, 2009, 45, 45-55.	1.2	126
39	Deactivation of the Limbic System During Acute Psychosocial Stress: Evidence from Positron Emission Tomography and Functional Magnetic Resonance Imaging Studies. Biological Psychiatry, 2008, 63, 234-240.	0.7	516
40	Dopaminergic and Noradrenergic Contributions to Functionality in ADHD: The Role of Methylphenidate. Current Neuropharmacology, 2008, 6, 322-328.	1.4	105
41	Stress-induced changes in LPS-induced pro-inflammatory cytokine production in chronic fatigue syndrome. Psychoneuroendocrinology, 2005, 30, 188-198.	1.3	126
42	The Montreal Imaging Stress Task: using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain. Journal of Psychiatry and Neuroscience, 2005, 30, 319-25.	1.4	345
43	Effects of Soy Lecithin Phosphatidic Acid and Phosphatidylserine Complex (PAS) on the Endocrine and Psychological Responses to Mental Stress. Stress, 2004, 7, 119-126.	0.8	55
44	Associations between neuroendocrine responses to the Insulin Tolerance Test and patient characteristics in chronic fatigue syndrome. Journal of Psychosomatic Research, 2004, 56, 419-424.	1.2	51
45	Enhanced glucocorticoid sensitivity in patients with chronic fatigue syndrome. Acta Neuropsychiatrica, 2003, 15, 184-191.	1.0	17
46	Assessment of Cortisol Response With Low-Dose and High-Dose ACTH in Patients With Chronic Fatigue Syndrome and Healthy Comparison Subjects. Psychosomatics, 2003, 44, 113-119.	2.5	22
47	Hypothalamic-Pituitary-Adrenal Axis Reactivity in Chronic Fatigue Syndrome and Health Under Psychological, Physiological, and Pharmacological Stimulation. Psychosomatic Medicine, 2002, 64, 951-962.	1.3	5
48	Low-Dose Dexamethasone Suppression Test in Chronic Fatigue Syndrome and Health. Psychosomatic Medicine, 2002, 64, 311-318.	1.3	89
49	Endocrine stress responses in chronic fatigue syndrome. International Congress Series, 2002, 1241, 41-46.	0.2	1
50	Hypothalamic-Pituitary-Adrenal Axis Reactivity in Chronic Fatigue Syndrome and Health Under Psychological, Physiological, and Pharmacological Stimulation. Psychosomatic Medicine, 2002, 64, 951-962.	1.3	100