Andrzej E Machocki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1519268/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Manganese–lanthanum oxides modified with silver for the catalytic combustion of methane. Journal of Catalysis, 2004, 227, 282-296.	6.2	350
2	Steam reforming of ethanol over Ni/support catalysts for generation of hydrogen for fuel cell applications. Catalysis Today, 2008, 137, 453-459.	4.4	69
3	Effect of the surface state on the catalytic performance of a Co/CeO2 ethanol steam-reforming catalyst. Journal of Catalysis, 2016, 340, 321-330.	6.2	61
4	Importance of palladium dispersion in Pd/Al2O3 catalysts for complete oxidation of humid low-methane–air mixtures. Catalysis Today, 2008, 137, 329-334.	4.4	54
5	Nano- and micro-powder of zirconia and ceria-supported cobalt catalysts for the steam reforming of bio-ethanol. Applied Surface Science, 2010, 256, 5551-5558.	6.1	53
6	Evolution of the structure of unpromoted and potassium-promoted ceria-supported nickel catalysts in the steam reforming of ethanol. Applied Catalysis B: Environmental, 2018, 221, 490-509.	20.2	52
7	Selective production of hydrogen by steam reforming of bio-ethanol. Catalysis Today, 2011, 176, 28-35.	4.4	43
8	Steam reforming and oxidative steam reforming of ethanol over PtKCo/CeO2 catalyst. Fuel, 2016, 183, 518-530.	6.4	37
9	Surface State and Catalytic Performance of Ceriaâ€Supported Cobalt Catalysts in the Steam Reforming of Ethanol. ChemCatChem, 2017, 9, 782-797.	3.7	34
10	Conversion of ethanol over supported cobalt oxide catalysts. Catalysis Today, 2011, 176, 14-20.	4.4	33
11	Performance evaluation of a proof-of-concept 70ÂW internal reforming methanol fuel cell system. Journal of Power Sources, 2016, 307, 875-882.	7.8	31
12	Comparative study on steam and oxidative steam reforming of ethanol over 2KCo/ZrO2 catalyst. Catalysis Today, 2015, 242, 50-59.	4.4	27
13	Oxidative coupling of methane over a sodium-calcium oxide catalyst modified with chloride ions. Chemical Engineering Journal, 2008, 137, 643-652.	12.7	26
14	Effect of potassium addition on a long term performance of Co–ZnO–Al2O3 catalysts in the low-temperature steam reforming of ethanol: Co-precipitation vs citrate method of catalysts synthesis. Applied Catalysis A: General, 2015, 505, 173-182.	4.3	25
15	Formation of carbonaceous deposit and its effect on carbon monoxide hydrogenation on iron-based catalysts. Applied Catalysis, 1991, 70, 237-252.	0.8	20
16	Methane oxidative coupling in an undiluted reaction mixture in a reactor-adsorber system with gas recirculation. Applied Catalysis A: General, 1996, 146, 391-400.	4.3	19
17	Estimation of Average Crystallites Size of Active Phase in Ceria-Supported Cobalt-Based Catalysts by Hydrogen Chemisorption vs TEM and XRD Methods. Catalysis Letters, 2016, 146, 2173-2184.	2.6	19
18	Complete Oxidation of Methane over Palladium Supported on Alumina Modified with Calcium,	1.8	17

Andrzej E Machocki

#	Article	IF	CITATIONS
19	Microscopic characterization of changes in the structure of KCo/CeO2 catalyst used in the steam reforming of ethanol. Materials Chemistry and Physics, 2016, 173, 219-237.	4.0	17
20	Influence of composition and morphology of the active phase on the catalytic properties of cobalt-nickel catalysts in the steam reforming of ethanol. Materials Chemistry and Physics, 2021, 258, 123970.	4.0	17
21	Single-Layer Graphene as an Effective Mediator of the Metal–Support Interaction. Journal of Physical Chemistry Letters, 2014, 5, 1837-1844.	4.6	16
22	Simultaneous oxidative coupling of methane and oxidative dehydrogenation of ethane on the Na+/CaO catalyst. Chemical Engineering Journal, 2002, 90, 165-172.	12.7	14
23	SSITKA studies of the catalytic flameless combustion of methane. Catalysis Today, 2008, 137, 312-317.	4.4	14
24	Conversion of Ethanol Over Co/CeO2 and KCo/CeO2 Catalysts for Hydrogen Production. Catalysis Letters, 2016, 146, 163-173.	2.6	14
25	Alcohol reforming on cobalt-based catalysts prepared from organic salt precursors. International Journal of Hydrogen Energy, 2012, 37, 16375-16381.	7.1	13
26	Hydrogen-rich gas generation from alcohols over cobalt-based catalysts for fuel cell feeding. Fuel Processing Technology, 2016, 148, 341-349.	7.2	13
27	Steady State Isotopic Transient Kinetic Analysis of Flameless Methane Combustion over Pd/Al2O3 and Pt/Al2O3 Catalysts. Topics in Catalysis, 2009, 52, 1085-1097.	2.8	12
28	Studies of catalytic process of complete oxidation of methane by SSITKA method. Applied Surface Science, 2010, 256, 5585-5589.	6.1	11
29	The mechanism of the CH4/O2 reaction on the Pd–Pt/γ-Al2O3 catalyst: A SSITKA study. Applied Catalysis B: Environmental, 2014, 160-161, 298-306.	20.2	11
30	Promotion of methane conversion catalysts into higher hydrocarbons. Applied Catalysis, 1991, 72, 283-294.	0.8	10
31	Hydrogen Formation via Steam Reforming of Ethanol Over Cu/ZnO Catalyst Modified with Nickel, Cobalt and Manganese. Catalysis Letters, 2009, 128, 443-448.	2.6	10
32	Chromium-modified zinc oxides. Journal of Thermal Analysis and Calorimetry, 2016, 125, 1205-1215.	3.6	10
33	Investigation of the Inhibiting Role of Hydrogen in the Steam Reforming of Methanol. ChemCatChem, 2019, 11, 3264-3278.	3.7	10
34	Catalysts for the utilization of methane from the coal mine ventilation air. Polish Journal of Chemical Technology, 2007, 9, 29-32.	0.5	6
35	The Influence of Nickel Dispersion in Ni/Al ₂ O ₃ Catalysts on Their Properties in the Reaction with Hydrogen, Hydrocarbons and Steam. Adsorption Science and Technology, 1998, 16, 747-757.	3.2	5
36	Influence of the anion of promoting sodium compounds on the activity and selectivity in oxidative coupling of methane. Catalysis Letters, 1991, 9, 97-101.	2.6	4

#	Article	IF	CITATIONS
37	The effect of the molybdenum promoter on the coking induction time of the catalysts in the hydrocarbons steam reforming. Studies in Surface Science and Catalysis, 1999, 126, 435-438.	1.5	4
38	Oxidative coupling of methane at moderate (600?650�C) temperatures. Catalysis Letters, 1994, 26, 85-93.	2.6	3
39	Oxidative coupling of methane to ethylene in a reaction system with products separation and gas recirculation. Studies in Surface Science and Catalysis, 1998, 119, 313-318.	1.5	3
40	The effects of cetyltrimethylammonium bromide surfactant on alumina modified zinc oxides. Materials Research Bulletin, 2016, 78, 36-45.	5.2	3
41	Alumina as a nickel catalysts support for steam reforming of hydrocarbons. Reaction Kinetics and Catalysis Letters, 1984, 26, 285-289.	0.6	2
42	Influence of added copper on the reduction and surface properties of nickel in Ni/γ-Al2O3 catalysts. Reaction Kinetics and Catalysis Letters, 1978, 8, 395-400.	0.6	1
43	Natural calcium minerals as catalysts of oxidative conversion of methane. Reaction Kinetics and Catalysis Letters, 1993, 51, 541-545.	0.6	1