
Lien-Yang Chou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1519202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insights into the Solid-State Synthesis of Defect-Rich Zr–UiO-66. Inorganic Chemistry, 2022, 61, 6829-6836.	4.0	3
2	Probing the Interface between Encapsulated Nanoparticles and Metal–Organic Frameworks for Catalytic Selectivity Control. Chemistry of Materials, 2021, 33, 1946-1953.	6.7	19
3	A direct solvent-free conversion approach to prepare mixed-metal metal–organic frameworks from doped metal oxides. Chemical Communications, 2021, 57, 3587-3590.	4.1	8
4	Electrolyte-Resistant Dual Materials for the Synergistic Safety Enhancement of Lithium-Ion Batteries. Nano Letters, 2021, 21, 2074-2080.	9.1	37
5	Encapsulation of bacterial cells in cytoprotective ZIF-90 crystals as living composites. Materials Today Bio, 2021, 10, 100097.	5.5	13
6	Creating an Aligned Interface between Nanoparticles and MOFs by Concurrent Replacement of Capping Agents. Journal of the American Chemical Society, 2021, 143, 5182-5190.	13.7	32
7	Sensitive, portable heavy-metal-ion detection by the sulfidation method on a superhydrophobic concentrator (SPOT). One Earth, 2021, 4, 756-766.	6.8	2
8	Tailoring Heterogeneous Catalysts at the Atomic Level: In Memoriam, Prof. Chia-Kuang (Frank) Tsung. ACS Applied Materials & Interfaces, 2021, , .	8.0	0
9	Rapid Fabrication of Biocomposites by Encapsulating Enzymes into Zn-MOF-74 via a Mild Water-Based Approach. ACS Applied Materials & Interfaces, 2021, 13, 52014-52022.	8.0	36
10	Nanoparticle encapsulation into 2D layered metal-organic frameworks with capping agent free interface. Microporous and Mesoporous Materials, 2021, 323, 111137.	4.4	5
11	Solid-State Synthesis of Defect-Rich Zr-UiO-66 Metal–Organic Framework Nanoparticles for the Catalytic Ring Opening of Epoxides with Alcohols. ACS Applied Nano Materials, 2021, 4, 9752-9759.	5.0	8
12	Fine-Tuning the Micro-Environment to Optimize the Catalytic Activity of Enzymes Immobilized in Multivariate Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 15378-15390.	13.7	72
13	A Direct Mechanochemical Conversion of Pt Doped MOF-74 from Doped Metal Oxides for CO Oxidation. Materials Today Nano, 2021, 17, 100158.	4.6	9
14	Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries. Nature Energy, 2020, 5, 786-793.	39.5	168
15	Tuning Metal–Organic Framework Nanocrystal Shape through Facet-Dependent Coordination. Nano Letters, 2020, 20, 1774-1780.	9.1	52
16	Probing Interactions between Metal–Organic Frameworks and Freestanding Enzymes in a Hollow Structure. Nano Letters, 2020, 20, 6630-6635.	9.1	76
17	Incorporating the Nanoscale Encapsulation Concept from Liquid Electrolytes into Solid-State Lithium–Sulfur Batteries. Nano Letters, 2020, 20, 5496-5503.	9.1	30
18	Investigating lattice strain impact on the alloyed surface of small Au@PdPt core–shell nanoparticles. Nanoscale, 2020, 12, 8687-8692.	5.6	16

LIEN-YANG CHOU

#	Article	IF	CITATIONS
19	A Fireproof, Lightweight, Polymer–Polymer Solid-State Electrolyte for Safe Lithium Batteries. Nano Letters, 2020, 20, 1686-1692.	9.1	175
20	Rapid mechanochemical encapsulation of biocatalysts into robust metal–organic frameworks. Nature Communications, 2019, 10, 5002.	12.8	139
21	Structural Control of Uniform MOF-74 Microcrystals for the Study of Adsorption Kinetics. ACS Applied Materials & Interfaces, 2019, 11, 35820-35826.	8.0	36
22	Directional Engraving within Single Crystalline Metal–Organic Framework Particles via Oxidative Linker Cleaving. Journal of the American Chemical Society, 2019, 141, 20365-20370.	13.7	72
23	Using a Multiâ€Shelled Hollow Metal–Organic Framework as a Host to Switch the Guestâ€ŧoâ€Host and Guestâ€ŧoâ€Guest Interactions. Angewandte Chemie - International Edition, 2018, 57, 2110-2114.	13.8	91
24	Using a Multiâ€Shelled Hollow Metal–Organic Framework as a Host to Switch the Guestâ€ŧoâ€Host and Guestâ€ŧoâ€Guest Interactions. Angewandte Chemie, 2018, 130, 2132-2136.	2.0	22
25	Shielding against Unfolding by Embedding Enzymes in Metal–Organic Frameworks via a <i>de Novo</i> Approach. Journal of the American Chemical Society, 2017, 139, 6530-6533.	13.7	292
26	Driving CO ₂ to a Quasi-Condensed Phase at the Interface between a Nanoparticle Surface and a Metal–Organic Framework at 1 bar and 298 K. Journal of the American Chemical Society, 2017, 139, 11513-11518.	13.7	55
27	Coupling Molecular and Nanoparticle Catalysts on Single Metal–Organic Framework Microcrystals for the Tandem Reaction of H ₂ O ₂ Generation and Selective Alkene Oxidation. ACS Catalysis, 2017, 7, 6691-6698.	11.2	34
28	Kinetics of â^'CH ₂ CH ₂ – Hydrogen Release from a BN-cyclohexene Derivative. Organometallics, 2016, 35, 2425-2428.	2.3	5
29	Surfactant-Mediated Conformal Overgrowth of Core-Shell Metal-Organic Framework Materials with Mismatched Topologies. Small, 2015, 11, 5551-5555.	10.0	104
30	Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a <i>de Novo</i> Approach: Size-Selective Sheltering of Catalase in Metal–Organic Framework Microcrystals. Journal of the American Chemical Society, 2015, 137, 4276-4279.	13.7	674
31	Formation of hollow and mesoporous structures in single-crystalline microcrystals of metal–organic frameworks via double-solvent mediated overgrowth. Nanoscale, 2015, 7, 19408-19412.	5.6	77
32	Molecular Encapsulation beyond the Aperture Size Limit through Dissociative Linker Exchange in Metal–Organic Framework Crystals. Journal of the American Chemical Society, 2014, 136, 12540-12543.	13.7	124
33	Surfactant-Directed Atomic to Mesoscale Alignment: Metal Nanocrystals Encased Individually in Single-Crystalline Porous Nanostructures. Journal of the American Chemical Society, 2014, 136, 10561-10564.	13.7	157
34	Selective Deposition of Ru Nanoparticles on TiSi ₂ Nanonet and Its Utilization for Li ₂ O ₂ Formation and Decomposition. Journal of the American Chemical Society, 2014, 136, 8903-8906.	13.7	106
35	Optimized Metal–Organic-Framework Nanospheres for Drug Delivery: Evaluation of Small-Molecule Encapsulation. ACS Nano, 2014, 8, 2812-2819.	14.6	716
36	The Effect of Lattice Strain on the Catalytic Properties of Pd Nanocrystals. ChemSusChem, 2013, 6, 1993-2000.	6.8	105

LIEN-YANG CHOU

#	Article	IF	CITATIONS
37	Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. Journal of the American Chemical Society, 2012, 134, 14345-14348.	13.7	608
38	Direct oxygen and hydrogen production by photo water splitting using a robust bioinspired manganese-oxo oligomer complex/tungsten oxide catalytic system. International Journal of Hydrogen Energy, 2012, 37, 8889-8896.	7.1	33
39	Water Splitting by Tungsten Oxide Prepared by Atomic Layer Deposition and Decorated with an Oxygenâ€Evolving Catalyst. Angewandte Chemie - International Edition, 2011, 50, 499-502.	13.8	285
40	Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8824-8829.	7.1	180
41	Domain requirement of moenomycin binding to bifunctional transglycosylases and development of high-throughput discovery of antibiotics. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 431-436.	7.1	66
42	The Functional Role of the Binuclear Metal Center in d-Aminoacylase. Journal of Biological Chemistry, 2004, 279, 13962-13967.	3.4	42
43	An Archetype of The Electrons-Unobstructed Core-Shell Composite with Inherent Selectivity: Conductive Metal-Organic Frameworks Encapsulated with Metal Nanoparticles. Nanoscale, 0, , .	5.6	1