
Christina Wüstefeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1519085/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of elevated temperature and reduced pressure on the degradation of iron nitride compound layer formed by plasma nitriding in <scp>AISI D2</scp> tool steels. Engineering Reports, 2022, 4, e12371.	1.7	0
2	On the polarisation and Mott-Schottky characteristics of an Fe-Mn-Al-Ni shape-memory alloy and pure Fe in NaCl-free and NaCl-contaminated Ca(OH)2,sat solution—A comparative study. Corrosion Science, 2021, 179, 109172.	6.6	17
3	Directionality of metal-induced crystallization and layer exchange in amorphous carbon/nickel thin film stacks. Carbon, 2020, 159, 656-667.	10.3	7
4	Hydrodynamic modeling and time-resolved imaging reflectometry of the ultrafast laser-induced ablation of a thin gold film. Optics and Lasers in Engineering, 2020, 129, 106067.	3.8	14
5	Thermal stability of nanolamellar fcc-Ti1-xAlxN grown by chemical vapor deposition. Acta Materialia, 2019, 174, 195-205.	7.9	26
6	Essential Factors Influencing the Bonding Strength of Cold-Sprayed Aluminum Coatings on Ceramic Substrates. Journal of Thermal Spray Technology, 2018, 27, 446-455.	3.1	27
7	Microstructure and thermal stability of Mo-(Ag)-N coatings with high nitrogen content. Surface and Coatings Technology, 2018, 352, 257-264.	4.8	6
8	Local heteroepitaxy as an adhesion mechanism in aluminium coatings cold gas sprayed on AlN substrates. Acta Materialia, 2017, 128, 418-427.	7.9	26
9	Thermally induced formation of metastable nanocomposites in amorphous Cr-Zr-O thin films deposited using reactive ion beam sputtering. Thin Solid Films, 2016, 612, 430-436.	1.8	9
10	Crystallography of phase transitions in metastable titanium aluminium nitride nanocomposites. Surface and Coatings Technology, 2014, 257, 26-37.	4.8	19
11	Capability of X-ray diffraction for the study of microstructure of metastable thin films. IUCrJ, 2014, 1, 446-456.	2.2	12
12	Interface phenomena in (super)hard nitride nanocomposites: from coatings to bulk materials. Chemical Society Reviews, 2012, 41, 5081.	38.1	28
13	Decomposition kinetics in Ti1-xAlxN coatings as studied by in-situ X-ray diffraction during annealing. Surface and Coatings Technology, 2011, 206, 1727-1734.	4.8	33
14	Magnetic response of (Cr,Al,Si)N nanocrystallites on the microstructure of Cr—Al—Si—N nanocomposites. Zeitschrift FA¼r Kristallographie, 2010, 225, 599-609.	1.1	13
15	Microstructure Investigation of the PVD Thin Films of TRIP Steels. Solid State Phenomena, 2010, 160, 273-279.	0.3	2
16	Effect of the aluminium content and the bias voltage on the microstructure formation in Ti1â^'xAlxN protective coatings grown by cathodic arc evaporation. Surface and Coatings Technology, 2010, 205, 1345-1349.	4.8	48
17	Interplay of microstructural features in Cr1â^'xAlxN and Cr1â^'xâ^'yAlxSiyN nanocomposite coatings deposited by cathodic arc evaporation. Surface and Coatings Technology, 2008, 202, 3199-3207.	4.8	15
18	Formation of defect structures in hard nanocomposites. Surface and Coatings Technology, 2008, 203, 572-578.	4.8	25

#	Article	IF	CITATIONS
19	Internal structure of clusters of partially coherent nanocrystallites in Cr–Al–N and Cr–Al–Si–N coatings. Surface and Coatings Technology, 2007, 201, 9476-9484.	4.8	34
20	Microstructure and adhesion characteristics of duplex coatings with different plasmaâ€nitrided layers and a Crâ€Alâ€Tiâ€Bâ€N physical vapor deposition coating. Engineering Reports, 0, , e12364.	1.7	2