Gema Medina-Gomez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1518497/publications.pdf

Version: 2024-02-01

55 papers 4,242 citations

126708 33 h-index 56 g-index

57 all docs

57 docs citations

57 times ranked

7406 citing authors

#	Article	IF	CITATIONS
1	Potential benefits of egg white hydrolysate in the prevention of Hg-induced dysfunction in adipose tissue. Food and Function, 2022, 13, 5996-6007.	2.1	3
2	Insulin-like Growth Factor I Couples Metabolism with Circadian Activity through Hypothalamic Orexin Neurons. International Journal of Molecular Sciences, 2022, 23, 4679.	1.8	4
3	Obesity and pregnancy, the perfect metabolic storm. European Journal of Clinical Nutrition, 2021, 75, 1723-1734.	1.3	17
4	Pleiotrophin Deficiency Induces Browning of Periovarian Adipose Tissue and Protects against High-Fat Diet-Induced Hepatic Steatosis. International Journal of Molecular Sciences, 2021, 22, 9261.	1.8	4
5	Transforming growth factor \hat{I}^2 3 deficiency promotes defective lipid metabolism and fibrosis in murine kidney. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	11
6	Lipidomic and Metabolomic Signature of Progression of Chronic Kidney Disease in Patients with Severe Obesity. Metabolites, 2021, 11, 836.	1.3	19
7	Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. PLoS Genetics, 2020, 16, e1009069.	1.5	15
8	Central nicotine induces browning through hypothalamic \hat{l}^2 opioid receptor. Nature Communications, 2019, 10, 4037.	5.8	32
9	Longâ€ŧerm caloric restriction ameliorates deleterious effects of aging on white and brown adipose tissue plasticity. Aging Cell, 2019, 18, e12948.	3.0	43
10	SUCNR1 controls an anti-inflammatory program in macrophages to regulate the metabolic response to obesity. Nature Immunology, 2019, 20, 581-592.	7.0	168
11	Chronic mercury at low doses impairs white adipose tissue plasticity. Toxicology, 2019, 418, 41-50.	2.0	21
12	Insulin action is severely impaired in adipocytes of apparently healthy overweight and obese subjects. Journal of Internal Medicine, 2019, 285, 578-588.	2.7	21
13	Underlying Mechanisms of Renal Lipotoxicity in Obesity. Nephron, 2019, 143, 28-32.	0.9	44
14	Pleiotrophin deletion alters glucose homeostasis, energy metabolism and brown fat thermogenic function in mice. Diabetologia, 2019, 62, 123-135.	2.9	20
15	The risk of jiggly fat in aging. Aging, 2019, 11, 5298-5299.	1.4	3
16	Transforming Growth Factor- \hat{l}^2 3 Regulates Adipocyte Number in Subcutaneous White Adipose Tissue. Cell Reports, 2018, 25, 551-560.e5.	2.9	68
17	PPARs and Metabolic Disorders Associated with Challenged Adipose Tissue Plasticity. International Journal of Molecular Sciences, 2018, 19, 2124.	1.8	116
18	Maintenance of Kidney Metabolic Homeostasis by PPAR Gamma. International Journal of Molecular Sciences, 2018, 19, 2063.	1.8	52

#	Article	IF	Citations
19	Hypothalamic AMPK-ER Stress-JNK1 Axis Mediates the Central Actions of Thyroid Hormones on Energy Balance. Cell Metabolism, 2017, 26, 212-229.e12.	7.2	167
20	Peroxisome Proliferator-Activated Receptor \hat{I}^3 2 Modulates Late-Pregnancy Homeostatic Metabolic Adaptations. Molecular Medicine, 2016, 22, 724-736.	1.9	18
21	Hypothalamus and thermogenesis: Heating the BAT, browning the WAT. Molecular and Cellular Endocrinology, 2016, 438, 107-115.	1.6	80
22	Maternal Exposure to Bisphenol-A During Pregnancy Increases Pancreatic \hat{I}^2 -Cell Growth During Early Life in Male Mice Offspring. Endocrinology, 2016, 157, 4158-4171.	1.4	59
23	Lipotoxicity as a trigger factor of renal disease. Journal of Nephrology, 2016, 29, 603-610.	0.9	88
24	Renal Lipotoxicity-Associated Inflammation and Insulin Resistance Affects Actin Cytoskeleton Organization in Podocytes. PLoS ONE, 2015, 10, e0142291.	1.1	65
25	Increased Dihydroceramide/Ceramide Ratio Mediated by Defective Expression of <i>degs1</i> Impairs Adipocyte Differentiation and Function. Diabetes, 2015, 64, 1180-1192.	0.3	55
26	DLK1/PREF1 regulates nutrient metabolism and protects from steatosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16088-16093.	3.3	54
27	Obesity and type 2 diabetes in renal pathology. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2013, 60, 23-25.	0.8	0
28	Adaptive Changes of the Insig1/SREBP1/SCD1 Set Point Help Adipose Tissue to Cope With Increased Storage Demands of Obesity. Diabetes, 2013, 62, 3697-3708.	0.3	76
29	Accelerated renal disease is associated with the development of metabolic syndrome in a glucolipotoxic mouse model. DMM Disease Models and Mechanisms, 2012, 5, 636-48.	1.2	35
30	Mitochondria and endocrine function of adipose tissue. Best Practice and Research in Clinical Endocrinology and Metabolism, 2012, 26, 791-804.	2.2	70
31	Papel de la lipotoxicidad en el desarrollo de la lesi \tilde{A}^3 n renal en el s \tilde{A} ndrome metab \tilde{A}^3 lico y el envejecimiento. Dialisis Y Trasplante, 2012, 33, 89-96.	0.4	1
32	Lipocalin Prostaglandin D Synthase and PPARγ2 Coordinate to Regulate Carbohydrate and Lipid Metabolism In Vivo. PLoS ONE, 2012, 7, e39512.	1.1	19
33	Metabolomic and Lipidomic Analysis of the Heart of Peroxisome Proliferator-Activated Receptor- \hat{l}^3 Coactivator 1 - \hat{l}^2 Knock Out Mice on a High Fat Diet. Metabolites, 2012, 2, 366-381.	1.3	6
34	Early peroxisome proliferator-activated receptor gamma regulated genes involved in expansion of pancreatic beta cell mass. BMC Medical Genomics, 2011, 4, 86.	0.7	15
35	PGC- $1\hat{l}^2$ Deficiency Accelerates the Transition to Heart Failure in Pressure Overload Hypertrophy. Circulation Research, 2011, 109, 783-793.	2.0	136
36	Deletion of the metabolic transcriptional coactivator PGC1 \hat{l}^2 induces cardiac arrhythmia. Cardiovascular Research, 2011, 92, 29-38.	1.8	30

#	Article	IF	CITATIONS
37	<i>Dact1</i> , a Nutritionally Regulated Preadipocyte Gene, Controls Adipogenesis by Coordinating the Wnt/β-Catenin Signaling Network. Diabetes, 2009, 58, 609-619.	0.3	84
38	Adaptation and failure of pancreatic \hat{l}^2 cells in murine models with different degrees of metabolic syndrome. DMM Disease Models and Mechanisms, 2009, 2, 582-592.	1,2	43
39	The metabolic profile of early Huntington's disease- a combined human and transgenic mouse study. Experimental Neurology, 2008, 210, 691-698.	2.0	99
40	Thermogenic effect of triiodothyroacetic acid at low doses in rat adipose tissue without adverse side effects in the thyroid axis. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E688-E697.	1.8	34
41	A Prevalent Variant in PPP1R3A Impairs Glycogen Synthesis and Reduces Muscle Glycogen Content in Humans and Mice. PLoS Medicine, 2008, 5, e27.	3.9	44
42	Mitochondrial Fusion Is Increased by the Nuclear Coactivator PGC-1Î ² . PLoS ONE, 2008, 3, e3613.	1.1	159
43	PPAR gamma 2 Prevents Lipotoxicity by Controlling Adipose Tissue Expandability and Peripheral Lipid Metabolism. PLoS Genetics, 2007, 3, e64.	1.5	346
44	IGF-Binding Protein-2 Protects Against the Development of Obesity and Insulin Resistance. Diabetes, 2007, 56, 285-294.	0.3	231
45	Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor Î ³ (PPARÎ ³) and PPARÎ ³ coactivator-1 (PGC1). Public Health Nutrition, 2007, 10, 1132-1137.	1.1	165
46	Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Systems Biology, 2007, 1, 12.	3.0	234
47	Ablation of PGC- $1\hat{1}^2$ Results in Defective Mitochondrial Activity, Thermogenesis, Hepatic Function, and Cardiac Performance. PLoS Biology, 2006, 4, e369.	2.6	249
48	Leptin Deficiency Unmasks the Deleterious Effects of Impaired Peroxisome Proliferator-Activated Receptor Function (P465L PPARÂ) in Mice. Diabetes, 2006, 55, 2669-2677.	0.3	80
49	Gateway to the metabolic syndrome. Nature Medicine, 2005, 11, 602-603.	15.2	46
50	The Link Between Nutritional Status and Insulin Sensitivity Is Dependent on the Adipocyte-Specific Peroxisome Proliferator-Activated Receptor-Â2 Isoform. Diabetes, 2005, 54, 1706-1716.	0.3	157
51	The Peroxisome Proliferator-activated Receptor-Î ³ Regulates Murine Pyruvate Carboxylase Gene Expression in Vivo and in Vitro. Journal of Biological Chemistry, 2005, 280, 27466-27476.	1.6	74
52	Nuclear receptor corepressor RIP140 regulates fat accumulation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 8437-8442.	3.3	337
53	T3 and Triac inhibit leptin secretion and expression in brown and white rat adipocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2004, 1682, 38-47.	1.2	24
54	Potent thermogenic action of triiodothyroacetic acid in brown adipocytes. Cellular and Molecular Life Sciences, 2003, 60, 1957-1967.	2.4	23

#	Article	IF	CITATIONS
55	Human Obesity and Type 2 Diabetes Are Associated With Alterations in SREBP1 Isoform Expression That Are Reproduced Ex Vivo by Tumor Necrosis Factor-Â. Diabetes, 2002, 51, 1035-1041.	0.3	133