
Mano Horinaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1517832/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	γ-Glutamylcyclotransferase, a novel regulator of HIF-1α expression, triggers aerobic glycolysis. Cancer Gene Therapy, 2022, 29, 37-48.	4.6	7
2	Sodium salicylate and 5-aminosalicylic acid synergistically inhibit the growth of human colon cancer cells and mouse intestinal polyp-derived cells. Journal of Clinical Biochemistry and Nutrition, 2022, 70, 93-102.	1.4	1
3	Heterogeneity among tumors with acquired resistance to EGFR tyrosine kinase inhibitors harboring <i>EGFR</i> â€T790M mutation in nonâ€small cell lung cancer cells. Cancer Medicine, 2022, 11, 944-955.	2.8	5
4	Oridonin inhibits SASP by blocking p38 and NF-κB pathways in senescent cells. Biochemical and Biophysical Research Communications, 2022, 590, 55-62.	2.1	10
5	HER3 activation contributes toward the emergence of ALK inhibitor-tolerant cells in ALK-rearranged lung cancer with mesenchymal features. Npj Precision Oncology, 2022, 6, 5.	5.4	13
6	The Rationale for the Dual-Targeting Therapy for RSK2 and AKT in Multiple Myeloma. International Journal of Molecular Sciences, 2022, 23, 2919.	4.1	2
7	Novel RAF/MEK inhibitor CH5126766/VSâ€6766 has efficacy in combination with eribulin for the treatment of tripleâ€negative breast cancer. Cancer Science, 2021, 112, 4166-4175.	3.9	6
8	The Combination of Cigarette Smoking and Alcohol Consumption Synergistically Increases Reactive Carbonyl Species in Human Male Plasma. International Journal of Molecular Sciences, 2021, 22, 9043.	4.1	2
9	Inhibition of c-Jun N-terminal kinase signaling increased apoptosis and prevented the emergence of ALK-TKI-tolerant cells in ALK-rearranged non-small cell lung cancer. Cancer Letters, 2021, 522, 119-128.	7.2	13
10	ONO-7475, a Novel AXL Inhibitor, Suppresses the Adaptive Resistance to Initial EGFR-TKI Treatment in <i>EGFR</i> -Mutated Non–Small Cell Lung Cancer. Clinical Cancer Research, 2020, 26, 2244-2256.	7.0	75
11	Histone deacetylase inhibitor OBP‑801 and amrubicin synergistically inhibit the growth of squamous cell lung carcinoma by inducing mitochondrial ASK1‑dependent apoptosis. International Journal of Oncology, 2020, 56, 848-856.	3.3	1
12	Sulforaphane enhances apoptosis induced by Lactobacillus pentosus strain S‑PT84 via the TNFα pathway in human colon cancer cells. Oncology Letters, 2019, 18, 4253-4261.	1.8	8
13	FGFR inhibitor BGJ398 and HDAC inhibitor OBP-801 synergistically inhibit cell growth and induce apoptosis in bladder cancer cells. Oncology Reports, 2018, 39, 627-632.	2.6	9
14	Sulindac sulfone inhibits the mTORC1 pathway in colon cancer cells by directly targeting voltage-dependent anion channel 1 and 2. Biochemical and Biophysical Research Communications, 2018, 505, 1203-1210.	2.1	10
15	The histone deacetylase inhibitor OBP-801 and eribulin synergistically inhibit the growth of triple-negative breast cancer cells with the suppression of survivin, Bcl-xL, and the MAPK pathway. Breast Cancer Research and Treatment, 2018, 171, 43-52.	2.5	17
16	A Histone Deacetylase Inhibitor, OBP-801, and Celecoxib Synergistically Inhibit the Cell Growth with Apoptosis via a DR5-Dependent Pathway in Bladder Cancer Cells. Molecular Cancer Therapeutics, 2016, 15, 2066-2075.	4.1	10
17	Myeloid zinc finger 1 mediates sulindac sulfide-induced upregulation of death receptor 5 of human colon cancer cells. Scientific Reports, 2015, 4, 6000.	3.3	14
18	PDK1 is a potential therapeutic target against angiosarcoma cells. Journal of Dermatological Science, 2015, 78, 44-50.	1.9	27

Mano Horinaka

#	Article	IF	CITATIONS
19	Metformin Causes G1-Phase Arrest via Down-Regulation of MiR-221 and Enhances TRAIL Sensitivity through DR5 Up-Regulation in Pancreatic Cancer Cells. PLoS ONE, 2015, 10, e0125779.	2.5	40
20	The Dual RAF/MEK Inhibitor CH5126766/RO5126766 May Be a Potential Therapy for RAS-Mutated Tumor Cells. PLoS ONE, 2014, 9, e113217.	2.5	38
21	Peroxisome proliferator-activated receptor \hat{I}^3 ligand troglitazone and TRAIL synergistically induce apoptosis. Oncology Reports, 2014, 31, 947-954.	2.6	2
22	Aclarubicin enhances tumor necrosis factorâ€related apoptosisâ€inducing ligandâ€induced apoptosis through death receptor 5 upregulation. Cancer Science, 2012, 103, 282-287.	3.9	8
23	<i>Lactobacillus</i> strains induce TRAIL production and facilitate natural killer activity against cancer cells. FEBS Letters, 2010, 584, 577-582.	2.8	31
24	Cyclin-Dependent Kinase Inhibitors Enhance Sensitivity to Methotrexate In Human T-Cell Leukemia Jurkat Cells. Blood, 2010, 116, 3976-3976.	1.4	1
25	The dietary flavonoid apigenin sensitizes malignant tumor cells to tumor necrosis factor–related apoptosis-inducing ligand. Molecular Cancer Therapeutics, 2006, 5, 945-951.	4.1	119
26	Luteolin induces apoptosis via death receptor 5 upregulation in human malignant tumor cells. Oncogene, 2005, 24, 7180-7189.	5.9	165
27	The combination of TRAIL and luteolin enhances apoptosis in human cervical cancer HeLa cells. Biochemical and Biophysical Research Communications, 2005, 333, 833-838.	2.1	84