
## IvÃ;n HernÃ;ndez Pérez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1517594/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Thermal performance of reflective materials applied to exterior building components—A review.<br>Energy and Buildings, 2014, 80, 81-105.                                         | 6.7 | 118       |
| 2  | Numerical study of earth-to-air heat exchanger for three different climates. Energy and Buildings, 2014, 76, 238-248.                                                            | 6.7 | 62        |
| 3  | Experimental thermal evaluation of building roofs with conventional and reflective coatings. Energy and Buildings, 2018, 158, 569-579.                                           | 6.7 | 56        |
| 4  | Numerical study of earth-to-air heat exchanger: The effect of thermal insulation. Energy and Buildings, 2014, 85, 356-361.                                                       | 6.7 | 53        |
| 5  | Thermal energy storage and losses in a room-Trombe wall system located in Mexico. Energy, 2016, 109, 512-524.                                                                    | 8.8 | 52        |
| 6  | Test box experiment and simulations of a green-roof: Thermal and energy performance of a residential building standard for Mexico. Energy and Buildings, 2020, 209, 109709.      | 6.7 | 48        |
| 7  | Ventilation potential of an absorber-partitioned air channel solar chimney for diurnal use under<br>Mexican climate conditions. Applied Thermal Engineering, 2019, 149, 807-821. | 6.0 | 43        |
| 8  | Thermal evaluation of a Room coupled with a Double Glazing Window with/without a solar control film for Mexico. Applied Thermal Engineering, 2017, 110, 805-820.                 | 6.0 | 42        |
| 9  | Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance. Energy, 2019, 170, 683-708.               | 8.8 | 42        |
| 10 | Solar chimneys with a phase change material for buildings: An overview using CFD and global energy balance. Energy and Buildings, 2019, 186, 384-404.                            | 6.7 | 40        |
| 11 | Thermal performance analysis of a roof with a PCM-layer under Mexican weather conditions.<br>Renewable Energy, 2020, 149, 773-785.                                               | 8.9 | 40        |
| 12 | Numerical study of the optimum width of 2a diurnal double air-channel solar chimney. Energy, 2018,<br>147, 403-417.                                                              | 8.8 | 37        |
| 13 | Effect of irrigation on the experimental thermal performance of a green roof in a semi-warm climate in Mexico. Energy and Buildings, 2017, 154, 232-243.                         | 6.7 | 33        |
| 14 | Thermal performance of a double pane window using glazing available on the Mexican market.<br>Renewable Energy, 2015, 81, 785-794.                                               | 8.9 | 31        |
| 15 | Pseudo transient numerical study of an earth-to-air heat exchanger for different climates of México.<br>Energy and Buildings, 2015, 99, 273-283.                                 | 6.7 | 31        |
| 16 | Experimental study of an earth to air heat exchanger (EAHE) for warm humid climatic conditions.<br>Geothermics, 2020, 84, 101741.                                                | 3.4 | 31        |
| 17 | Parametric analysis of the thermal behavior of a single-channel solar chimney. Solar Energy, 2020, 209, 602-617.                                                                 | 6.1 | 23        |
| 18 | Thermal behavior of a phase change material in a building roof with and without reflective coating in a warm humid zone. Journal of Building Engineering, 2020, 32, 101648.      | 3.4 | 23        |

IvÃin HernÃindez Pérez

| #  | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Thermal performance of a double pane window with a solar control coating for warm climate of<br>Mexico. Applied Thermal Engineering, 2016, 106, 257-265.                                                                                       | 6.0 | 22        |
| 20 | Computational fluid dynamics for thermal evaluation of a room with a double glazing window with a solar control film. Renewable Energy, 2016, 94, 237-250.                                                                                     | 8.9 | 19        |
| 21 | Thermal performance of a hollow block with/without insulating and reflective materials for roofing in Mexico. Applied Thermal Engineering, 2017, 123, 243-255.                                                                                 | 6.0 | 18        |
| 22 | Thermal Performance of a Concrete Cool Roof under Different Climatic Conditions of Mexico. Energy<br>Procedia, 2014, 57, 1753-1762.                                                                                                            | 1.8 | 17        |
| 23 | Multi-gene genetic programming for predicting the heat gain of flat naturally ventilated roof using<br>data from outdoor environmental monitoring. Measurement: Journal of the International<br>Measurement Confederation, 2019, 138, 106-117. | 5.0 | 17        |
| 24 | Thermal and Energy Evaluation of a Domestic Refrigerator under the Influence of the Thermal Load.<br>Energies, 2019, 12, 400.                                                                                                                  | 3.1 | 16        |
| 25 | Thermal performance of a solar façade system for building ventilation in the southeast of Mexico.<br>Renewable Energy, 2020, 145, 294-307.                                                                                                     | 8.9 | 16        |
| 26 | Coupling building energy simulation and computational fluid dynamics: An overview. Journal of<br>Building Physics, 2020, 44, 137-180.                                                                                                          | 2.4 | 16        |
| 27 | Computational fluid dynamics for modeling the turbulent natural convection in a double air-channel solar chimney system. International Journal of Modern Physics C, 2016, 27, 1650095.                                                         | 1.7 | 11        |
| 28 | Thermal potential of a geothermal earth-to-air heat exchanger in six climatic conditions of México.<br>Mechanics and Industry, 2020, 21, 308.                                                                                                  | 1.3 | 11        |
| 29 | Test box experiment to assess the impact of waterproofing materials on the energy gain of building roofs in Mexico. Energy, 2019, 186, 115847.                                                                                                 | 8.8 | 8         |
| 30 | Influence of Traditional and Solar Reflective Coatings on the Heat Transfer of Building Roofs in<br>Mexico. Applied Sciences (Switzerland), 2021, 11, 3263.                                                                                    | 2.5 | 8         |
| 31 | Unsteady-RANS simulation of conjugate heat transfer in a cavity with a vertical semitransparent wall.<br>Computers and Fluids, 2015, 117, 183-195.                                                                                             | 2.5 | 7         |
| 32 | Experimental study of convective heat transfer in a ventilated rectangular cavity. Journal of Building<br>Physics, 2018, 42, 388-415.                                                                                                          | 2.4 | 7         |
| 33 | Assessment of Resource and Forecast Modeling of Wind Speed through An Evolutionary Programming<br>Approach for the North of Tehuantepec Isthmus (Cuauhtemotzin, Mexico). Energies, 2018, 11, 3197.                                             | 3.1 | 6         |
| 34 | Using Artificial Intelligence to Analyze the Thermal Behavior of Building Roofs. Journal of Energy<br>Engineering - ASCE, 2020, 146, .                                                                                                         | 1.9 | 6         |
| 35 | Empirical model of hygrothermal behavior of masonry wall under different climatic conditions using a hot box. Energy and Buildings, 2021, 249, 111209.                                                                                         | 6.7 | 6         |
| 36 | Annual thermal evaluation of a ventilated roof under warm weather conditions of Mexico. Energy, 2022, 246, 123412.                                                                                                                             | 8.8 | 5         |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Optical thickness effect on natural convection in a vertical channel containing a gray gas.<br>International Journal of Heat and Mass Transfer, 2017, 107, 510-519.                                                                       | 4.8 | 4         |
| 38 | Evaluation of the CPU time for solving the radiative transfer equation with high-order resolution schemes applying the normalized weighting-factor method. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 208, 45-63. | 2.3 | 4         |
| 39 | <pre><mml:math xmins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math&lt;/td"><td>7.5</td><td>4</td></mml:math></pre>                                                                                                  | 7.5 | 4         |
| 40 | Reflective Materials for Cost-Effective Energy-Efficient Retrofitting of Roofs. , 2017, , 119-139.                                                                                                                                        |     | 3         |
| 41 | Computational Fluid Dynamics for Thermal Evaluation of Earth-to-Air Heat Exchanger for Different<br>Climates of Mexico. , 2018, , 33-51.                                                                                                  |     | 3         |
| 42 | Acceleration of the numerical solution for the radiative transfer equation using a modified relaxation factor. Engineering Computations, 2020, 37, 1823-1847.                                                                             | 1.4 | 3         |
| 43 | Review on methodological and normative advances in assessment and estimation of wind energy.<br>Energy and Environment, 2021, 32, 25-61.                                                                                                  | 4.6 | 3         |
| 44 | Development of a solar calorimeter for the thermal evaluation of glazing samples. Journal of Building Physics, 2019, 42, 750-770.                                                                                                         | 2.4 | 2         |
| 45 | Thermal evaluation of building roofs with conventional and reflective coatings. , 2021, , 247-273.                                                                                                                                        |     | 1         |
| 46 | Numerical Study of the Distribution of Temperatures and Relative Humidity in a Ventilated Room<br>Located in Warm Weather. CMES - Computer Modeling in Engineering and Sciences, 2020, 123, 571-602.                                      | 1.1 | 1         |
| 47 | Numerical simulation of an instrument to determine the thermal conductivity of conductive solids.<br>Mechanics and Industry, 2017, 18, 105.                                                                                               | 1.3 | 0         |
| 48 | Modeling the effect of roof coatings materials on the building thermal temperature variations based on an artificial intelligence. Journal of Physics: Conference Series, 2022, 2180, 012014.                                             | 0.4 | 0         |