Henry F Chambers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/151754/publications.pdf

Version: 2024-02-01

92 1 papers cit

12,812 citations

109264 35 h-index 85 g-index

95 all docs 95 docs citations 95 times ranked 12411 citing authors

#	Article	IF	CITATIONS
1	Clinical Practice Guidelines by the Infectious Diseases Society of America for the Treatment of Methicillin-Resistant Staphylococcus aureus Infections in Adults and Children. Clinical Infectious Diseases, 2011, 52, e18-e55.	2.9	2,673
2	Waves of resistance: Staphylococcus aureus in the antibiotic era. Nature Reviews Microbiology, 2009, 7, 629-641.	13.6	2,049
3	Practice Guidelines for the Diagnosis and Management of Skin and Soft Tissue Infections: 2014 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 2014, 59, e10-e52.	2.9	1,711
4	Daptomycin versus Standard Therapy for Bacteremia and Endocarditis Caused by Staphylococcus aureus. New England Journal of Medicine, 2006, 355, 653-665.	13.9	1,347
5	Executive Summary: Practice Guidelines for the Diagnosis and Management of Skin and Soft Tissue Infections: 2014 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 2014, 59, 147-159.	2.9	1,156
6	Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. Journal of Clinical Investigation, 2009, 119, 2464-2474.	3.9	410
7	Daptomycin: Another Novel Agent for Treating Infections Due to Drugâ€Resistant Gramâ€Positive Pathogens. Clinical Infectious Diseases, 2004, 38, 994-1000.	2.9	319
8	Can Ceftazidime-Avibactam and Aztreonam Overcome \hat{l}^2 -Lactam Resistance Conferred by Metallo- \hat{l}^2 -Lactamases in Enterobacteriaceae?. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	217
9	Molecular and clinical epidemiology of carbapenem-resistant Enterobacterales in the USA (CRACKLE-2): a prospective cohort study. Lancet Infectious Diseases, The, 2020, 20, 731-741.	4.6	174
10	Clindamycin versus Trimethoprim–Sulfamethoxazole for Uncomplicated Skin Infections. New England Journal of Medicine, 2015, 372, 1093-1103.	13.9	166
11	A Placebo-Controlled Trial of Antibiotics for Smaller Skin Abscesses. New England Journal of Medicine, 2017, 376, 2545-2555.	13.9	156
12	Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): a prospective, multicentre, cohort study. Lancet Infectious Diseases, The, 2022, 22, 401-412.	4.6	122
13	Treatment of Methicillin-Resistant <i>Staphylococcus aureus</i> Bacteremia. Infection and Chemotherapy, 2016, 48, 267.	1.0	120
14	The Emperor's New Clothes: PRospective Observational Evaluation of the Association Between Initial VancomycIn Exposure and Failure Rates Among ADult HospitalizEd Patients With Methicillin-resistant Staphylococcus aureus Bloodstream Infections (PROVIDE). Clinical Infectious Diseases, 2020, 70, 1536-1545.	2.9	106
15	Imipenem for Treatment of Tuberculosis in Mice and Humans. Antimicrobial Agents and Chemotherapy, 2005, 49, 2816-2821.	1.4	105
16	Evaluation of Ceftobiprole in a Rabbit Model of Aortic Valve Endocarditis Due to Methicillin-Resistant and Vancomycin-Intermediate Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2005, 49, 884-888.	1.4	94
17	A <i>mec A</i> -Negative Strain of Methicillin-Resistant <i>S taphylococcus aureus</i> with High-Level β-Lactam Resistance Contains Mutations in Three Genes. Antimicrobial Agents and Chemotherapy, 2010, 54, 4900-4902.	1.4	90
18	Staphylococcus aureus Bacteremia at 5 US Academic Medical Centers, 2008-2011: Significant Geographic Variation in Community-Onset Infections. Clinical Infectious Diseases, 2014, 59, 798-807.	2.9	85

#	Article	IF	Citations
19	Native-Valve Infective Endocarditis. New England Journal of Medicine, 2020, 383, 567-576.	13.9	85
20	USA300 and USA500 Clonal Lineages of Staphylococcus aureus Do Not Produce a Capsular Polysaccharide Due to Conserved Mutations in the <i>cap5</i> Locus. MBio, 2015, 6, .	1.8	82
21	Atovaquone inhibits the glucuronidation and increases the plasma concentrations of zidovudine*. Clinical Pharmacology and Therapeutics, 1996, 59, 14-21.	2.3	71
22	IVIG-mediated protection against necrotizing pneumonia caused by MRSA. Science Translational Medicine, 2016, 8, 357ra124.	5.8	70
23	Ceftobiprole- and Ceftaroline-Resistant Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2015, 59, 2960-2963.	1.4	69
24	Short- vs Standard-Course Outpatient Antibiotic Therapy for Community-Acquired Pneumonia in Children. JAMA Pediatrics, 2022, 176, 253.	3.3	66
25	Importance of non-pharmaceutical interventions in lowering the viral inoculum to reduce susceptibility to infection by SARS-CoV-2 and potentially disease severity. Lancet Infectious Diseases, The, 2021, 21, e296-e301.	4.6	57
26	Endocarditis Due to Methicillin-Resistant Staphylococcus aureus in Rabbits: Expression of Resistance to Â-Lactam Antibiotics in Vivo and in Vitro. Journal of Infectious Diseases, 1984, 149, 894-903.	1.9	55
27	Whole-Genome Sequencing of Methicillin-Resistant Staphylococcus aureus Resistant to Fifth-Generation Cephalosporins Reveals Potential Non-mecA Mechanisms of Resistance. PLoS ONE, 2016, 11, e0149541.	1.1	53
28	Rapid Molecular Diagnostics, Antibiotic Treatment Decisions, and Developing Approaches to Inform Empiric Therapy: PRIMERS I and II. Clinical Infectious Diseases, 2016, 62, 181-189.	2.9	52
29	High-Level Resistance of Staphylococcus aureus to \hat{l}^2 -Lactam Antibiotics Mediated by Penicillin-Binding Protein 4 (PBP4). Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	44
30	Structural and kinetic analyses of penicillin-binding protein 4 (PBP4)-mediated antibiotic resistance in Staphylococcus aureus. Journal of Biological Chemistry, 2018, 293, 19854-19865.	1.6	44
31	Clinical Practice Variation Among Adult Infectious Disease Physicians in the Management of <i>Staphylococcus aureus</i> Bacteremia. Clinical Infectious Diseases, 2019, 69, 530-533.	2.9	44
32	Evaluation of a Paradigm Shift From Intravenous Antibiotics to Oral Step-Down Therapy for the Treatment of Infective Endocarditis. JAMA Internal Medicine, 2020, 180, 769.	2.6	44
33	Sulfamethoxazole-Trimethoprim (Cotrimoxazole) for Skin and Soft Tissue Infections Including Impetigo, Cellulitis, and Abscess. Open Forum Infectious Diseases, 2017, 4, ofx232.	0.4	42
34	Determining the optimal dosing of a novel combination regimen of ceftazidime/avibactam with aztreonam against NDM-1-producing Enterobacteriaceae using a hollow-fibre infection model. Journal of Antimicrobial Chemotherapy, 2020, 75, 2622-2632.	1.3	39
35	Considerations for Clinical Trials of <i>Staphylococcus aureus</i> Bloodstream Infection in Adults. Clinical Infectious Diseases, 2019, 68, 865-872.	2.9	38
36	Solving staphylococcal resistance to \hat{l}^2 -lactams. Trends in Microbiology, 2003, 11, 145-148.	3.5	37

#	Article	IF	CITATIONS
37	Rapid Molecular Diagnostics to Inform Empiric Use of Ceftazidime/Avibactam and Ceftolozane/Tazobactam Against Pseudomonas aeruginosa: PRIMERS IV. Clinical Infectious Diseases, 2019, 68, 1823-1830.	2.9	37
38	A Prognostic Model of Persistent Bacteremia and Mortality in Complicated Staphylococcus aureus Bloodstream Infection. Clinical Infectious Diseases, 2019, 68, 1502-1511.	2.9	36
39	Ampicillin, Sulbactam, and Rifampin Combination Treatment of Experimental Methicillin-Resistant Staphylococcus aureus Endocarditis in Rabbits. Journal of Infectious Diseases, 1995, 171, 897-902.	1.9	34
40	PBP4: A New Perspective on Staphylococcus aureus \hat{l}^2 -Lactam Resistance. Microorganisms, 2018, 6, 57.	1.6	34
41	Treatment of Infection and Colonization Caused by Methicillin-Resistant Staphylococcus aureus. Infection Control and Hospital Epidemiology, 1991, 12, 29-35.	1.0	33
42	Efficacy of Levofloxacin for Experimental Aortic-Valve Endocarditis in Rabbits Infected with Viridans Group Streptococcus or <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 1999, 43, 2742-2746.	1.4	33
43	PBP 4 Mediates High-Level Resistance to New-Generation Cephalosporins in Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2016, 60, 3934-3941.	1.4	32
44	PBP4 Mediates \hat{I}^2 -Lactam Resistance by Altered Function. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	30
45	Bicarbonate Resensitization of Methicillin-Resistant <i>Staphylococcus aureus</i> to \hat{l}^2 -Lactam Antibiotics. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	27
46	Informing Antibiotic Treatment Decisions: Evaluating Rapid Molecular Diagnostics To Identify Susceptibility and Resistance to Carbapenems against Acinetobacter spp. in PRIMERS III. Journal of Clinical Microbiology, 2017, 55, 134-144.	1.8	26
47	Ceftaroline-Resistant, Daptomycin-Tolerant, and Heterogeneous Vancomycin-Intermediate Methicillin-Resistant Staphylococcus aureus Causing Infective Endocarditis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	24
48	Prevalence of Slow-Growth Vancomycin Nonsusceptibility in Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1,4	24
49	Antimicrobial Stewardship Approaches in the Intensive Care Unit. Infectious Disease Clinics of North America, 2017, 31, 513-534.	1.9	24
50	Antibacterial Resistance Leadership Group: Open for Business. Clinical Infectious Diseases, 2014, 58, 1571-1576.	2.9	22
51	Pharmacology and the Treatment of Complicated Skin and Skin-Structure Infections. New England Journal of Medicine, 2014, 370, 2238-2239.	13.9	22
52	Trends in prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolated from patients with community- and healthcare-associated bacteriuria: results from 2014 to 2020 in an urban safety-net healthcare system. Antimicrobial Resistance and Infection Control, 2021, 10, 118.	1.5	22
53	Comparative Efficacies of Tedizolid Phosphate, Vancomycin, and Daptomycin in a Rabbit Model of Methicillin-Resistant Staphylococcus aureus Endocarditis. Antimicrobial Agents and Chemotherapy, 2015, 59, 3252-3256.	1.4	21
54	Skin and Soft Tissue Infections in Persons Who Inject Drugs. Infectious Disease Clinics of North America, 2021, 35, 169-181.	1.9	21

#	Article	IF	Citations
55	Omadacycline â€" The Newest Tetracycline. New England Journal of Medicine, 2019, 380, 588-589.	13.9	20
56	Vancomycin MIC Does Not Predict 90-Day Mortality, Readmission, or Recurrence in a Prospective Cohort of Adults with Staphylococcus aureus Bacteremia. Antimicrobial Agents and Chemotherapy, 2016, 60, 5276-5284.	1.4	19
57	PBP4 activity and its overexpression are necessary for PBP4-mediated high-level \hat{l}^2 -lactam resistance. Journal of Antimicrobial Chemotherapy, 2018, 73, 1177-1180.	1.3	19
58	Accessory Genomes Drive Independent Spread of Carbapenem-Resistant Klebsiella pneumoniae Clonal Groups 258 and 307 in Houston, TX. MBio, 2022, 13, e0049722.	1.8	17
59	Scope and Predictive Genetic/Phenotypic Signatures of Bicarbonate (NaHCO $<$ sub $>$ 3 $<$ /sub $>$) Responsiveness and \hat{I}^2 -Lactam Sensitization in Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	13
60	Daptomycin–β-Lactam Combinations in a Rabbit Model of Daptomycin-Nonsusceptible Methicillin-Resistant Staphylococcus aureus Endocarditis. Antimicrobial Agents and Chemotherapy, 2016, 60, 3976-3979.	1.4	11
61	Patient-Directed Discharges Among Persons Who Use Drugs Hospitalized with Invasive Staphylococcus aureus Infections: Opportunities for Improvement. American Journal of Medicine, 2022, 135, 91-96.	0.6	11
62	Is Daptomycin plus Ceftaroline Associated with Better Clinical Outcomes than Standard of Care Monotherapy for Staphylococcus aureus Bacteremia?. Antimicrobial Agents and Chemotherapy, 2019, 63, .	1.4	9
63	Impact of Bicarbonate on PBP2a Production, Maturation, and Functionality in Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2021, 65, .	1.4	9
64	Analytical Evaluation of the Abbott RealTime CT/NG Assay for Detection of Chlamydia trachomatis and Neisseria gonorrhoeae in Rectal and Pharyngeal Swabs. Journal of Molecular Diagnostics, 2020, 22, 811-816.	1.2	8
65	Loss of GdpP Function in Staphylococcus aureus Leads to \hat{i}^2 -Lactam Tolerance and Enhanced Evolution of \hat{i}^2 -Lactam Resistance. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0143121.	1.4	8
66	Efficacy of cefoperazone in combination with sulbactam in experimental Staphylococcus aureus endocarditis in rabbits. Journal of Antimicrobial Chemotherapy, 1993, 32, 453-458.	1.3	7
67	Structural analysis of avibactam-mediated activation of the bla and mec divergons in methicillin-resistant Staphylococcus aureus. Journal of Biological Chemistry, 2020, 295, 10870-10884.	1.6	7
68	Antibacterial Resistance Leadership Group 2.0: Back to Business. Clinical Infectious Diseases, 2021, 73, 730-739.	2.9	7
69	A Combined Phenotypic-Genotypic Predictive Algorithm for In Vitro Detection of Bicarbonate: β-Lactam Sensitization among Methicillin-Resistant Staphylococcus aureus (MRSA). Antibiotics, 2021, 10, 1089.	1.5	7
70	Impact of Bicarbonate-Î ² -Lactam Exposures on Methicillin-Resistant Staphylococcus aureus (MRSA) Gene Expression in Bicarbonate-Î ² -Lactam-Responsive vs. Non-Responsive Strains. Genes, 2021, 12, 1650.	1.0	7
71	Associations Between Vancomycin Exposure and Acute Kidney Injury Within the Recommended Area Under the Curve Therapeutic Exposure Range Among Patients With Methicillin-Resistant <i>Staphylococcus aureus</i> Bloodstream Infections. Open Forum Infectious Diseases, 2022, 9, ofab651.	0.4	6
72	Gastrointestinal Microbiome Disruption and Antibiotic-Associated Diarrhea in Children Receiving Antibiotic Therapy for Community-Acquired Pneumonia. Journal of Infectious Diseases, 2022, 226, 1109-1119.	1.9	6

#	Article	IF	Citations
73	Prosthetic Valve Endocarditis Diagnosis and Management— New Paradigm Shift Narratives. Clinical Infectious Diseases, 2021, 72, 1687-1692.	2.9	5
74	Impacts of NaHCO3 on \hat{I}^2 -Lactam Binding to PBP2a Protein Variants Associated with the NaHCO3-Responsive versus NaHCO3-Non-Responsive Phenotypes. Antibiotics, 2022, 11, 462.	1.5	4
75	The NaHCO ₃ -Responsive Phenotype in Methicillin-Resistant Staphylococcus aureus (MRSA) Is Influenced by <i>mecA</i> Genotype. Antimicrobial Agents and Chemotherapy, 2022, 66, e0025222.	1.4	3
76	Rifabutin to the Rescue?. Journal of Infectious Diseases, 2020, 222, 1422-1424.	1.9	2
77	Skin and Soft Tissue Infections. Infectious Disease Clinics of North America, 2021, 35, xiii-xiv.	1.9	2
78	608Can Rapid Molecular Diagnostics Assist in the Choice of b-Lactam Antibiotics? An Analysis of Data from PRIMERS-II of the Antibiotic Resistance Leadership Group (ARLG). Open Forum Infectious Diseases, 2014, 1, S28-S28.	0.4	1
79	Probability of Eradication Using Vancomycin Alone or in Combination for Methicillin-Resistant Staphylococcus aureus Bacteremia. Antimicrobial Agents and Chemotherapy, 2014, 58, 7617-7617.	1.4	1
80	Reply to Lesho and Clifford. Clinical Infectious Diseases, 2016, 63, 571-572.	2.9	1
81	2276. Clinical Epidemiology of the Carbapenem-Resistant Enterobacteriaceae (CRE) Epidemic in Colombia: A Multicenter Prospective Study. Open Forum Infectious Diseases, 2019, 6, S779-S779.	0.4	1
82	Antimicrobial Drug Development Efficiency and Surrogate Markers of Clinical Benefit. JAMA Internal Medicine, 2020, 180, 138.	2.6	1
83	Differential Trends in Extended-Spectrum Beta-Lactamase-Producing <i>Escherichia coli</i> Infections in Four Health Care Facilities in a Single Metropolitan Area: A Retrospective Analysis. Microbial Drug Resistance, 2021, 27, 154-161.	0.9	1
84	175. Randomized Double-blind Controlled Trial of Short vs. Standard Course Outpatient Therapy of Community Acquired Pneumonia in Children (SCOUT-CAP). Open Forum Infectious Diseases, 2020, 7, S216-S216.	0.4	1
85	Endogenous or Exogenous Origin of Platelet-Activating Factor in Cerebrospinal Fluid of Children with Bacterial Meningitis-Reply. Journal of Infectious Diseases, 1991, 163, 1166-1166.	1.9	0
86	Merle A. Sande: 1939–2007. Clinical Infectious Diseases, 2008, 46, 1743-1744.	2.9	0
87	Reply to Cataldo et al. Clinical Infectious Diseases, 2011, 53, 310-310.	2.9	O
88	724Vancomycin Minimum Inhibitory Concentration Does Not Predict Death, Recurrence or Readmission in Patients with Staphylococcus aureus Bacteremia in a Safety-Net Hospital. Open Forum Infectious Diseases, 2014, 1, S204-S204.	0.4	0
89	Epidemiology of community-associated methicillin-resistant Staphylococcus aureus in San Francisco children. Journal of Pediatric Infectious Diseases, 2015, 04, 247-259.	0.1	0
90	607. Scope and Predictive Genetic/Phenotypic Signatures of "Bicarbonate [NaHCO3]-Responsivity―and β-Lactam Sensitization among Methicillin-Resistant Staphylococcus aureus (MRSA). Open Forum Infectious Diseases, 2019, 6, S284-S284.	0.4	0

#	Article	IF	CITATIONS
91	Community-Onset Oxacillin-Resistant Staphylococcus aureus Infection. , 0, , 85-93.		O
92	39. Comparative One-year Outcomes of Invasive <i>staphylococcus Aureus</i> infections Among Persons with and Without Drug Use in an Urban West Coast Cohort. Open Forum Infectious Diseases, 2020, 7, S20-S21.	0.4	0