
Katarzyna Goljanek-Whysall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1517197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNAs in obesity, sarcopenia, and commonalities for sarcopenic obesity: a systematic review. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 68-85.	2.9	13
2	Mouse microRNA signatures in joint ageing and post-traumatic osteoarthritis. Osteoarthritis and Cartilage Open, 2021, 3, 100186.	0.9	13
3	Small-RNA Sequencing Reveals Altered Skeletal Muscle microRNAs and snoRNAs Signatures in Weanling Male Offspring from Mouse Dams Fed a Low Protein Diet during Lactation. Cells, 2021, 10, 1166.	1.8	4
4	miRâ€24 and its target gene Prdx6 regulate viability and senescence of myogenic progenitors during aging. Aging Cell, 2021, 20, e13475.	3.0	9
5	Low protein intake during reproduction compromises the recovery of lactationâ€induced bone loss in female mouse dams without affecting skeletal muscles. FASEB Journal, 2020, 34, 11844-11859.	0.2	7
6	Redox signalling in physiology, ageing and disease. Biogerontology, 2020, 21, 411-414.	2.0	0
7	Aging Science Talks: The role of miR-181a in age-related loss of muscle mass and function. Translational Medicine of Aging, 2020, 4, 81-85.	0.6	7
8	Inflamma-miR-21 Negatively Regulates Myogenesis during Ageing. Antioxidants, 2020, 9, 345.	2.2	28
9	miRâ€181a regulates p62/SQSTM1, parkin, and protein DJâ€1 promoting mitochondrial dynamics in skeletal muscle aging. Aging Cell, 2020, 19, e13140.	3.0	50
10	MicroRNAs as potential therapeutic targets for muscle wasting during cancer cachexia. Current Opinion in Clinical Nutrition and Metabolic Care, 2020, 23, 157-163.	1.3	7
11	Skeletal Muscle Wasting and Its Relationship With Osteoarthritis: a Mini-Review of Mechanisms and Current Interventions. Current Rheumatology Reports, 2019, 21, 40.	2.1	81
12	Ageing here and now: current research and transformative therapies. Biogerontology, 2019, 20, 249-253.	2.0	0
13	Micro(RNA)-managing muscle wasting. Journal of Applied Physiology, 2019, 127, 619-632.	1.2	27
14	Redox responses are preserved across muscle fibres with differential susceptibility to aging. Journal of Proteomics, 2018, 177, 112-123.	1.2	24
15	Identification of a novel loss-of-function PHEX mutation, Ala720Ser, in a sporadic case of adult-onset hypophosphatemic osteomalacia. Bone, 2018, 106, 30-34.	1.4	8
16	The biology of ageing and the omics revolution. Biogerontology, 2018, 19, 435-436.	2.0	1
17	Developing a toolkit for the assessment and monitoring of musculoskeletal ageing. Age and Ageing, 2018, 47, iv1-iv19.	0.7	25
18	Towards a toolkit for the assessment and monitoring of musculoskeletal ageing. Age and Ageing, 2018, 47. 774-777	0.7	1

#	Article	IF	CITATIONS
19	microRNA–SIRTâ€1 interactions: key regulators of adult skeletal muscle homeostasis?. Journal of Physiology, 2017, 595, 3253-3254.	1.3	3
20	Using computer simulation models to investigate the most promising microRNAs to improve muscle regeneration during ageing. Scientific Reports, 2017, 7, 12314.	1.6	19
21	MicroRNA Dysregulation in Aging and Pathologies of the Skeletal Muscle. International Review of Cell and Molecular Biology, 2017, 334, 265-308.	1.6	10
22	Preparation and Culture of Myogenic Precursor Cells/Primary Myoblasts from Skeletal Muscle of Adult and Aged Humans. Journal of Visualized Experiments, 2017, , .	0.2	15
23	Why do we age? Insights into biology and evolution of ageing. Biogerontology, 2017, 18, 855-857.	2.0	1
24	MicroRNA Profiling in Cartilage Ageing. International Journal of Genomics, 2017, 2017, 1-11.	0.8	21
25	Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression. Mammalian Genome, 2016, 27, 341-357.	1.0	29
26	The effect of lengthening contractions on neuromuscular junction structure in adult and old mice. Age, 2016, 38, 259-272.	3.0	21
27	Ageâ€related changes in miRâ€143â€3p:lgfbp5 interactions affect muscle regeneration. Aging Cell, 2016, 15, 361-369.	3.0	68
28	The functional consequences of age-related changes in microRNA expression in skeletal muscle. Biogerontology, 2016, 17, 641-654.	2.0	54
29	Decoding the Regulatory Landscape of Ageing in Musculoskeletal Engineered Tissues Using Genome-Wide DNA Methylation and RNASeq. PLoS ONE, 2016, 11, e0160517.	1.1	26
30	Sprouty2 mediated tuning of signalling is essential for somite myogenesis. BMC Medical Genomics, 2015, 8, S8.	0.7	2
31	microRNAs: Modulators of the underlying pathophysiology of sarcopenia?. Ageing Research Reviews, 2015, 24, 263-273.	5.0	62
32	myomiR-dependent switching of BAF60 variant incorporation into Brg1 chromatin remodeling complexes during embryo myogenesis. Development (Cambridge), 2014, 141, 3378-3387.	1.2	58
33	Fgf negative regulators control early chick somite myogenesis. BMC Genomics, 2014, 15, .	1.2	0
34	Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation. Journal of Cell Science, 2012, 125, 3590-3600.	1.2	117
35	microRNAs in skeletal muscle differentiation and disease. Clinical Science, 2012, 123, 611-625.	1.8	75
36	Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation. Development (Cambridge), 2012, 139, e1-e1.	1.2	1

#	Article	IF	CITATIONS
37	MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11936-11941.	3.3	110
38	Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Developmental Biology, 2008, 321, 491-499.	0.9	239