Pavel Kotenkov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1517193/publications.pdf Version: 2024-02-01

DAVEL KOTENKOV

#	Article	IF	CITATIONS
1	Manifestation of Isomorphism in the Formation of Aluminides in Al Alloys with Two Transition Metals. Inorganic Materials, 2021, 57, 241-248.	0.8	0
2	Thermodynamic Characteristics of Binary Al–Hf Melts. Russian Metallurgy (Metally), 2021, 2021, 919-923.	0.5	1
3	Formation of Metastable Aluminides in Al–Sc–Ti (Zr, Hf) Cast Alloys. Metals and Materials International, 2020, 26, 1515-1523.	3.4	11
4	Effect of Temperature on the Formation of Stable and Metastable Aluminide Phases in Al‒Zr‒Nb Alloys. Russian Journal of Non-Ferrous Metals, 2020, 61, 319-324.	0.6	1
5	Formation of Metastable Aluminides in Alloys of Al – Hf – Sc (Ti) Systems. Metal Science and Heat Treatment, 2020, 61, 782-786.	0.6	1
6	Formation of Aluminides with L12 Cubic Lattice in Alloys of the Al – Zr – Y and Al – Ti – Y Systems. Metal Science and Heat Treatment, 2019, 60, 566-570.	0.6	2
7	Formation of stable and metastable aluminides in Al‒Zr‒Ti, Al‒Ti‒Nb alloys. AIP Conference Proceedings, 2018, , .	0.4	1
8	Structural Features of Al–Hf–Sc Master Alloys. Russian Journal of Non-Ferrous Metals, 2017, 58, 639-643.	0.6	8
9	Combined Low-Frequency and Electro-Impulse Treatment of Molten Metal. Metallurgist, 2017, 61, 330-333.	0.6	1
10	Antifriction coating of Cu-Fe-Al-Pb system for plain bearings. AIP Conference Proceedings, 2017, , .	0.4	0
11	Synergetic effect in modifying with master alloys having an aluminide cubic structure. Russian Metallurgy (Metally), 2016, 2016, 162-166.	0.5	5
12	Effect of the Al–Zr–Y master alloy composition on the modifying effect in the Al–4% Cu alloy. Russian Metallurgy (Metally), 2016, 2016, 167-169.	0.5	2
13	Master alloys Al-Sc-Zr, Al-Sc-Ti, and Al-Ti-Zr: Their manufacture, composition, and structure. Russian Metallurgy (Metally), 2013, 2013, 590-594.	0.5	14
14	Al-Ti-Zr master alloys: Structure formation. Russian Metallurgy (Metally), 2012, 2012, 357-361.	0.5	12
15	Analysis of the refinement and coalescence of solid particles during low-frequency treatment of metal melts. Russian Metallurgy (Metally), 2012, 2012, 146-148.	0.5	0
16	Al-Sc-Zr master alloy and estimation of its modifying capacity. Russian Metallurgy (Metally), 2011, 2011, 715-718.	0.5	6