Birgit Sawitzki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1517184/publications.pdf Version: 2024-02-01

RIDCIT SAMUTZKI

#	Article	IF	CITATIONS
1	Severe COVID-19 Is Marked by a Dysregulated Myeloid Cell Compartment. Cell, 2020, 182, 1419-1440.e23.	13.5	1,162
2	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
3	Guidelines for the use of flow cytometry and cell sorting in immunological studies [*] . European Journal of Immunology, 2017, 47, 1584-1797.	1.6	505
4	Development of a cross-platform biomarker signature to detect renal transplant tolerance in humans. Journal of Clinical Investigation, 2010, 120, 1848-1861.	3.9	488
5	Erythropoietin Is a Paracrine Mediator of Ischemic Tolerance in the Brain: Evidence from an <i>In Vitro</i> Model. Journal of Neuroscience, 2002, 22, 10291-10301.	1.7	436
6	Swarm Learning for decentralized and confidential clinical machine learning. Nature, 2021, 594, 265-270.	13.7	375
7	Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2016, 75, 1407-1415.	0.5	303
8	IFN-γ production by alloantigen-reactive regulatory T cells is important for their regulatory function in vivo. Journal of Experimental Medicine, 2005, 201, 1925-1935.	4.2	288
9	Expression of p16INK4a and other cell cycle regulator and senescence associated genes in aging human kidney. Kidney International, 2004, 65, 510-520.	2.6	287
10	Longitudinal Multi-omics Analyses Identify Responses of Megakaryocytes, Erythroid Cells, and Plasmablasts as Hallmarks of Severe COVID-19. Immunity, 2020, 53, 1296-1314.e9.	6.6	278
11	SARS-CoV-2 infection triggers profibrotic macrophage responses and lung fibrosis. Cell, 2021, 184, 6243-6261.e27.	13.5	277
12	Regulatory cell therapy in kidney transplantation (The ONE Study): a harmonised design and analysis of seven non-randomised, single-arm, phase 1/2A trials. Lancet, The, 2020, 395, 1627-1639.	6.3	266
13	Regulatory T Cell Specificity Directs Tolerance versus Allergy against Aeroantigens in Humans. Cell, 2016, 167, 1067-1078.e16.	13.5	253
14	Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children. Nature Biotechnology, 2022, 40, 319-324.	9.4	229
15	Cross-reactive CD4 ⁺ T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science, 2021, 374, eabh1823.	6.0	221
16	Cutting Edge: Immunological Consequences and Trafficking of Human Regulatory Macrophages Administered to Renal Transplant Recipients. Journal of Immunology, 2011, 187, 2072-2078.	0.4	220
17	Standardization of whole blood immune phenotype monitoring for clinical trials: panels and methods from the ONE study. Transplantation Research, 2013, 2, 17.	1.5	194
18	Alloantigen-Induced CD25+CD4+ Regulatory T Cells Can Develop In Vivo from CD25â^'CD4+ Precursors in a Thymus-Independent Process. Journal of Immunology, 2004, 172, 923-928.	0.4	189

#	Article	IF	CITATIONS
19	Interferon \hat{I}^3 : a crucial role in the function of induced regulatory T cells in vivo. Trends in Immunology, 2006, 27, 183-187.	2.9	180
20	Epigenomic Profiling of Human CD4+ T Cells Supports a Linear Differentiation Model and Highlights Molecular Regulators of Memory Development. Immunity, 2016, 45, 1148-1161.	6.6	174
21	Inhibition of ischemia/reperfusion injury and chronic graft deterioration by a single-donor treatment with cobalt-protoporphyrin for the induction of heme oxygenase-1. Transplantation, 2002, 74, 591-598.	0.5	162
22	Untimely TGFÎ ² responses in COVID-19 limit antiviral functions of NK cells. Nature, 2021, 600, 295-301.	13.7	146
23	Early IFN- $\hat{1}\pm$ signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19. Immunity, 2021, 54, 2650-2669.e14.	6.6	145
24	Hurdles in therapy with regulatory T cells. Science Translational Medicine, 2015, 7, 304ps18.	5.8	136
25	Functional human regulatory T cells fail to control autoimmune inflammation due to PKB/c-akt hyperactivation in effector cells. Blood, 2011, 118, 3538-3548.	0.6	134
26	Foxp3 ⁺ Helios ⁺ regulatory T cells are expanded in active systemic lupus erythematosus. Annals of the Rheumatic Diseases, 2013, 72, 1549-1558.	0.5	127
27	A time-resolved proteomic and prognostic map of COVID-19. Cell Systems, 2021, 12, 780-794.e7.	2.9	125
28	Dependence on nuclear factor of activated T-cells (NFAT) levels discriminates conventional T cells from Foxp3 ⁺ regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16258-16263.	3.3	123
29	Complement activation induces excessive T cell cytotoxicity in severe COVID-19. Cell, 2022, 185, 493-512.e25.	13.5	122
30	Antigen-specific expansion of human regulatory T cells as a major tolerance mechanism against mucosal fungi. Mucosal Immunology, 2014, 7, 916-928.	2.7	110
31	TGFβ-dependent expression of PD-1 and PD-L1 controls CD8+ T cell anergy in transplant tolerance. ELife, 2016, 5, e08133.	2.8	105
32	TIGIT+ iTregsÂelicited by human regulatory macrophages control T cell immunity. Nature Communications, 2018, 9, 2858.	5.8	101
33	Regulatory T cells for minimising immune suppression in kidney transplantation: phase I/IIa clinical trial. BMJ, The, 2020, 371, m3734.	3.0	101
34	Central Role of CD45RAâ^' Foxp3hi Memory Regulatory T Cells in Clinical Kidney Transplantation Tolerance. Journal of the American Society of Nephrology: JASN, 2015, 26, 1795-1805.	3.0	100
35	Age and gender leucocytes variances and references values generated using the standardized ONE‣tudy protocol. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 543-564.	1.1	88
36	Identification of Gene Markers for the Prediction of Allograft Rejection or Permanent Acceptance. American Journal of Transplantation, 2007, 7, 1091-1102.	2.6	79

#	Article	IF	CITATIONS
37	Feasibility, long-term safety, and immune monitoring of regulatory T cell therapy in living donor kidney transplant recipients. American Journal of Transplantation, 2021, 21, 1603-1611.	2.6	79
38	B-Cell-Related Biomarkers of Tolerance are Up-Regulated in Rejection-Free Kidney Transplant Recipients. Transplantation, 2013, 95, 148-154.	0.5	72
39	Temporal omics analysis in Syrian hamsters unravel cellular effector responses to moderate COVID-19. Nature Communications, 2021, 12, 4869.	5.8	68
40	Microglial Activation Milieu Controls Regulatory T Cell Responses. Journal of Immunology, 2013, 191, 5594-5602.	0.4	66
41	Prospective assessment of antidonor cellular alloreactivity is a tool for guidance of immunosuppression in kidney transplantation. Kidney International, 2013, 84, 1226-1236.	2.6	66
42	BKV, CMV, and EBV Interactions and their Effect on Graft Function One Year Post-Renal Transplantation: Results from a Large Multi-Centre Study. EBioMedicine, 2018, 34, 113-121.	2.7	66
43	Differences in CD44 Surface Expression Levels and Function Discriminates IL-17 and IFN-Î ³ Producing Helper T Cells. PLoS ONE, 2015, 10, e0132479.	1.1	64
44	Protection from Abortion by Heme Oxygenase-1 Up-Regulation Is Associated with Increased Levels of Bag-1 and Neuropilin-1 at the Fetal-Maternal Interface. Journal of Immunology, 2005, 175, 4875-4885.	0.4	59
45	Clinical relevance of the <i>de novo</i> production of anti-HLA antibodies following intestinal and multivisceral transplantation. Transplant International, 2014, 27, 280-289.	0.8	59
46	Induction of Allograft Tolerance by Monoclonal CD3 Antibodies: A Matter of Timing. American Journal of Transplantation, 2012, 12, 2909-2919.	2.6	57
47	Clinical Use of Tolerogenic Dendritic Cells-Harmonization Approach in European Collaborative Effort. Mediators of Inflammation, 2015, 2015, 1-8.	1.4	57
48	Killer-like receptors and GPR56 progressive expression defines cytokine production of human CD4+ memory T cells. Nature Communications, 2019, 10, 2263.	5.8	57
49	CD137+CD154â ^{~,} Expression As a Regulatory T Cell (Treg)-Specific Activation Signature for Identification and Sorting of Stable Human Tregs from In Vitro Expansion Cultures. Frontiers in Immunology, 2018, 9, 199.	2.2	55
50	Low-dose interleukin-2 therapy in refractory systemic lupus erythematosus: an investigator-initiated, single-centre phase 1 and 2a clinical trial. Lancet Rheumatology, The, 2019, 1, e44-e54.	2.2	53
51	CD45RA Distinguishes CD4+CD25+CD127â^'/low TSDR Demethylated Regulatory T Cell Subpopulations With Differential Stability and Susceptibility to Tacrolimus-Mediated Inhibition of Suppression. Transplantation, 2017, 101, 302-309.	0.5	52
52	Mitogenâ€activated protein kinase activity drives cell trajectories in colorectal cancer. EMBO Molecular Medicine, 2021, 13, e14123.	3.3	47
53	Single-cell analysis based dissection of clonality in myelofibrosis. Nature Communications, 2020, 11, 73.	5.8	46
54	Exhaustive Differentiation of Alloreactive CD8+ T Cells: Critical for Determination of Graft Acceptance or Rejection. Transplantation, 2008, 85, 1339-1347.	0.5	45

#	Article	IF	CITATIONS
55	Synovial and Peripheral Blood CD4+FoxP3+ T Cells in Spondyloarthritis. Journal of Rheumatology, 2011, 38, 2445-2451.	1.0	44
56	Serum biomarkers for neurofibromatosis type 1 and early detection of malignant peripheral nerve-sheath tumors. BMC Medicine, 2013, 11, 109.	2.3	44
57	Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Frontiers in Immunology, 2017, 8, 1844.	2.2	43
58	Targeting of Macrophage Activity by Adenovirus-Mediated Intragraft Overexpression of TNFRp55-Ig, IL-12p40, and vIL-10 Ameliorates Adenovirus-Mediated Chronic Graft Injury, whereas Stimulation of Macrophages by Overexpression of IFN-Î ³ Accelerates Chronic Graft Injury in a Rat Renal Allograft Model. Journal of the American Society of Nephrology: JASN, 2003, 14, 214-225.	3.0	41
59	Tregs. Current Opinion in Organ Transplantation, 2012, 17, 34-41.	0.8	41
60	Abdominal Wall Transplantation: Skin as a Sentinel Marker for Rejection. American Journal of Transplantation, 2016, 16, 1892-1900.	2.6	41
61	Impact of hepatic rearterialization on reperfusion injury and outcome after mouse liver transplantation1. Transplantation, 2003, 76, 327-332.	0.5	38
62	Expansion of Memory-Type CD8+ T Cells Correlates With the Failure of Early Immunosuppression Withdrawal After Cadaver Liver Transplantation Using High-Dose ATG Induction and Rapamycin. Transplantation, 2013, 96, 306-315.	0.5	38
63	Molecular Characterization of Acute Cellular Rejection Occurring During Intentional Immunosuppression Withdrawal in Liver Transplantation. American Journal of Transplantation, 2016, 16, 484-496.	2.6	38
64	Ways Forward for Tolerance-Inducing Cellular Therapies- an AFACTT Perspective. Frontiers in Immunology, 2019, 10, 181.	2.2	37
65	CD96 expression determines the inflammatory potential of IL-9–producing Th9 cells. Proceedings of the United States of America, 2018, 115, E2940-E2949.	3.3	36
66	CYTOTOXIC EFFECTOR MOLECULE GENE EXPRESSION IN ACUTE RENAL ALLOGRAFT REJECTION. Transplantation, 2001, 72, 1158-1161.	0.5	36
67	Transient mTOR inhibition rescues 4-1BB CAR-Tregs from tonic signal-induced dysfunction. Nature Communications, 2021, 12, 6446.	5.8	35
68	Upregulation of Bag-1 by Ex Vivo Gene Transfer Protects Rat Livers from Ischemia/Reperfusion Injury. Human Gene Therapy, 2002, 13, 1495-1504.	1.4	34
69	Effects of Remifentanil and Fentanyl on the Cell-Mediated Immune Response in Patients Undergoing Elective Coronary Artery Bypass Graft Surgery. Journal of International Medical Research, 2008, 36, 1235-1247.	0.4	34
70	CD30 Discriminates Heat Shock Protein 60-Induced FOXP3+CD4+ T Cells with a Regulatory Phenotype. Journal of Immunology, 2010, 185, 2071-2079.	0.4	34
71	Elevation of CD4+ Differentiated Memory T Cells Is Associated With Acute Cellular and Antibody-Mediated Rejection After Liver Transplantation. Transplantation, 2013, 95, 1512-1520.	0.5	34
72	Non-HLA Antibodies May Accelerate Immune Responses After Intestinal and Multivisceral Transplantation. Transplantation, 2017, 101, 141-149.	0.5	32

#	Article	IF	CITATIONS
73	Human CD45RAâ^' FoxP3hi Memory-Type Regulatory T Cells Show Distinct TCR Repertoires With Conventional T Cells and Play an Important Role in Controlling Early Immune Activation. American Journal of Transplantation, 2015, 15, 2625-2635.	2.6	31
74	Fas ligand breaks tolerance to self-antigens and induces tumor immunity mediated by antibodies. Cancer Cell, 2002, 2, 315-322.	7.7	29
75	Permanent CNI Treatment for Prevention of Renal Allograft Rejection in Sensitized Hosts Can Be Replaced by Regulatory T Cells. American Journal of Transplantation, 2012, 12, 2384-2394.	2.6	29
76	A standardized immune phenotyping and automated data analysis platform for multicenter biomarker studies. JCI Insight, 2018, 3, .	2.3	29
77	Regulatory tolerance-mediating T cells in transplantation tolerance. Transplantation Proceedings, 2001, 33, 2092-2093.	0.3	28
78	Expression of Tolerance Associated Gene-1, a Mitochondrial Protein Inhibiting T Cell Activation, Can Be Used to Predict Response to Immune Modulating Therapies. Journal of Immunology, 2009, 183, 4077-4087.	0.4	28
79	Influence of combined treatment of low dose rapamycin and cyclosporin A on corneal allograft survival. Graefe's Archive for Clinical and Experimental Ophthalmology, 2010, 248, 1447-1456.	1.0	28
80	Prevention of Graft-versus-Host Disease by Adoptive T Regulatory Therapy Is Associated with Active Repression of Peripheral Blood Toll-Like Receptor 5 mRNA Expression. Biology of Blood and Marrow Transplantation, 2014, 20, 173-182.	2.0	28
81	Short-Term TNF-Alpha Inhibition Reduces Short-Term and Long-Term Inflammatory Changes Post-Ischemia/Reperfusion in Rat Intestinal Transplantation. Transplantation, 2014, 97, 732-739.	0.5	28
82	Monitoring tolerance and rejection in organ transplant recipients. Biomarkers, 2011, 16, S42-S50.	0.9	27
83	Wild immunology assessed by multidimensional mass cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 85-95.	1.1	27
84	Can We Use Biomarkers and Functional Assays to Implement Personalized Therapies in Transplantation?. Transplantation, 2009, 87, 1595-1601.	0.5	26
85	Allogeneic partially HLA-matched dendritic cells pulsed with autologous tumor cell lysate as a vaccine in metastatic renal cell cancer. Human Vaccines and Immunotherapeutics, 2013, 9, 1217-1227.	1.4	25
86	Alpha-1,2-Mannosidase and Hence N-Glycosylation Are Required for Regulatory T Cell Migration and Allograft Tolerance in Mice. PLoS ONE, 2010, 5, e8894.	1.1	25
87	Rat Cytomegalovirus Infection Interferes with Anti-CD4 mAb-(RIB 5/2) Mediated Tolerance and Induces Chronic Allograft Damage. American Journal of Transplantation, 2006, 6, 2035-2045.	2.6	24
88	Immune monitoring in renal transplantation: The search for biomarkers. European Journal of Immunology, 2016, 46, 2695-2704.	1.6	24
89	Interferon Gamma: Friend or Foe?. Transplantation, 2007, 84, S4-S5.	0.5	23
90	Tolerogenic effect of fiber tract injury: reduced EAE severity following entorhinal cortex lesion. Experimental Brain Research, 2007, 178, 542-553.	0.7	23

#	Article	IF	CITATIONS
91	Antiâ€CD4â€mediated selection of Treg <i>in vitro</i> – <i>in vitro</i> suppression does not predict <i>in vivo</i> capacity to prevent graft rejection. European Journal of Immunology, 2008, 38, 1677-1688.	1.6	23
92	High Weight Differences between Donor and Recipient Affect Early Kidney Graft Function-A Role for Enhanced IL-6 Signaling. American Journal of Transplantation, 2009, 9, 1742-1751.	2.6	23
93	Generation of HCMV-specific T-cell Lines From Seropositive Solid-organ-transplant Recipients for Adoptive T-cell Therapy. Journal of Immunotherapy, 2009, 32, 932-940.	1.2	22
94	Cellular Energy Metabolism in T-Lymphocytes. International Reviews of Immunology, 2015, 34, 34-49.	1.5	21
95	Mild hypothermia provides Treg stability. Scientific Reports, 2017, 7, 11915.	1.6	20
96	SARS-CoV-2 mRNA vaccinations fail to elicit humoral and cellular immune responses in patients with multiple sclerosis receiving fingolimod. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 960-971.	0.9	20
97	Bag-1 up-regulation in anti-CD4 mAb treated allo-activated T cells confers resistance to apoptosis. European Journal of Immunology, 2002, 32, 800.	1.6	19
98	Intragraft Mechanisms Associated With the Immunosuppressive Versus the Tolerogenic Effect of CD3 Antibodies in a Mouse Model of Islet Allografts. Transplantation Proceedings, 2013, 45, 1895-1898.	0.3	19
99	Effector T cell subclasses associate with tumor burden in neurofibromatosis type 1 patients. Cancer Immunology, Immunotherapy, 2016, 65, 1113-1121.	2.0	19
100	Immune monitoring as prerequisite for transplantation tolerance trials. Clinical and Experimental Immunology, 2017, 189, 158-170.	1.1	19
101	Allogeneic gene-modified tumor cells (RCC-26/IL-7/CD80) as a vaccine in patients with metastatic renal cell cancer: a clinical phase-I study. Gene Therapy, 2011, 18, 354-363.	2.3	18
102	Generation of highly effective and stable murine alloreactive <scp>T</scp> reg cells by combined antiâ€ <scp>CD</scp> 4 m <scp>A</scp> b, <scp>TGF</scp> â€i², and <scp>RA</scp> treatment. European Journal of Immunology, 2013, 43, 3291-3305.	1.6	18
103	Effect of induction therapy on the expression of molecular markers associated with rejection and tolerance. BMC Nephrology, 2015, 16, 146.	0.8	18
104	Demethylation of the TSDR Is a Marker of Squamous Cell Carcinoma in Transplant Recipients. American Journal of Transplantation, 2014, 14, 2617-2622.	2.6	17
105	Comparative immune profiling of acute respiratory distress syndrome patients with or without SARS-CoV-2 infection. Cell Reports Medicine, 2021, 2, 100291.	3.3	17
106	IFN-Â Regulation in Anti-CD4 Antibody-Induced T Cell Unresponsiveness. Journal of the American Society of Nephrology: JASN, 2004, 15, 695-703.	3.0	16
107	Dextran Sulfate Facilitates Anti-CD4 mAb-Induced Long-Term Rat Cardiac Allograft Survival After Prolonged Cold Ischemia. American Journal of Transplantation, 2008, 8, 1151-1162.	2.6	14
108	Pretransplant immune risk assessment. Current Opinion in Organ Transplantation, 2009, 14, 650-655.	0.8	14

#	Article	IF	CITATIONS
109	A novel approach reveals that HLA class 1 single antigen bead-signatures provide a means of high-accuracy pre-transplant risk assessment of acute cellular rejection in renal transplantation. BMC Immunology, 2019, 20, 11.	0.9	14
110	State of the art on the research for biomarkers allowing individual, tailor-made minimization of immunosuppression. Current Opinion in Organ Transplantation, 2010, 15, 691-696.	0.8	13
111	TCAIM Decreases T Cell Priming Capacity of Dendritic Cells by Inhibiting TLR-Induced Ca2+ Influx and IL-2 Production. Journal of Immunology, 2015, 194, 3136-3146.	0.4	12
112	Gravitational stress during parabolic flights reduces the number of circulating innate and adaptive leukocyte subsets in human blood. PLoS ONE, 2018, 13, e0206272.	1.1	12
113	The use of novel diagnostics to individualize immunosuppression following transplantation. Transplant International, 2015, 28, 911-920.	0.8	11
114	Shortâ€ŧerm cytokine stimulation reveals regulatory TÂcells with downâ€regulated Foxp3 expression in human peripheral blood. European Journal of Immunology, 2018, 48, 366-379.	1.6	11
115	The Mitochondrial Protein TCAIM Regulates Activation of T Cells and Thereby Promotes Tolerance Induction of Allogeneic Transplants. American Journal of Transplantation, 2014, 14, 2723-2735.	2.6	10
116	Standardized Multi-Color Flow Cytometry and Computational Biomarker Discovery. Methods in Molecular Biology, 2016, 1371, 225-238.	0.4	10
117	Sequential Targeting of CD52 and TNF Allows Early Minimization Therapy in Kidney Transplantation: From a Biomarker to Targeting in a Proof-Of-Concept Trial. PLoS ONE, 2017, 12, e0169624.	1.1	10
118	Ex vivo gene transfer of viral interleukin-10 to BB rat islets: no protection after transplantation to diabetic BB rats. Journal of Cellular and Molecular Medicine, 2007, 11, 868-880.	1.6	9
119	Differential Expression and Function of α-Mannosidase I in Stimulated Naive and Memory CD4+ T Cells. Journal of Immunotherapy, 2011, 34, 428-437.	1.2	9
120	Single-Cell Analysis Based Dissection of Clonality in Myelofibrosis. Blood, 2019, 134, 469-469.	0.6	9
121	Allo-specific T-Cells Encoding for Viral IL-10 Exert Strong Immunomodulatory Effects in vitro but Fail to Prevent Graft Rejection. American Journal of Transplantation, 2005, 5, 268-281.	2.6	7
122	Mechanisms and Rescue Strategies of Calcineurin Inhibitor Mediated Tolerance Abrogation Induced by Anti-CD4 mAb Treatment. American Journal of Transplantation, 2013, 13, 2308-2321.	2.6	7
123	Early Enrichment and Restitution of the Peripheral Blood Treg Pool Is Associated With Rejection-Free Stable Immunosuppression After Liver Transplantation. Transplantation, 2016, 100, e39-e40.	0.5	7
124	Intragraft and Systemic Immune Parameters Discriminating Between Rejection and Long-Term Graft Function in a Preclinical Model of Intestinal Transplantation. Transplantation, 2017, 101, 1036-1045.	0.5	7
125	Hepatocyte Transplantation to the Liver via the Splenic Artery in a Juvenile Large Animal Model. Cell Transplantation, 2019, 28, 14S-24S.	1.2	7
126	Deciphering the Role of Humoral and Cellular Immune Responses in Different COVID-19 Vaccines—A Comparison of Vaccine Candidate Genes in Roborovski Dwarf Hamsters. Viruses, 2021, 13, 2290.	1.5	7

#	Article	IF	CITATIONS
127	Control of TNF-Induced Dendritic Cell Maturation by Hybrid-Type <i>N</i> -Glycans. Journal of Immunology, 2011, 186, 5201-5211.	0.4	6
128	Application of cultured human regulatory TÂcells requires preclinical inÂvivo evaluation. Journal of Allergy and Clinical Immunology, 2012, 129, 852-855.e3.	1.5	6
129	Treg Therapy in Transplantation: How and When Will We Do It?. Current Transplantation Reports, 2015, 2, 233-241.	0.9	6
130	No prolongation of skin allograft survival by immunoproteasome inhibition in mice. Molecular Immunology, 2017, 88, 32-37.	1.0	6
131	Low-dose cyclosporine mediates donor hyporesponsiveness in a fully mismatched rat kidney transplant model. Transplant Immunology, 2012, 26, 176-185.	0.6	5
132	Molecular Analysis of Renal Allograft Biopsies—More Than a Nice Toy for Researchers?. American Journal of Transplantation, 2013, 13, 539-540.	2.6	5
133	Risk factors for Epstein–Barr virus reactivation after renal transplantation: Results of a large, multiâ€centre study. Transplant International, 2021, 34, 1680-1688.	0.8	5
134	Age-Related Differences in Structure and Function of Nasal Epithelial Cultures From Healthy Children and Elderly People. Frontiers in Immunology, 2022, 13, 822437.	2.2	5
135	Bag-1 up-regulation in anti-CD4 mAb-treated allo-activated T cell confers resistance to activation-induced cell death (AICD). Transplant Immunology, 2002, 9, 83-91.	0.6	4
136	Peripheral biomarkers for individualizing immunosuppression in transplantation - Regulatory T cells. Clinica Chimica Acta, 2012, 413, 1406-1413.	0.5	4
137	The Host Peritoneal Cavity Harbors Prominent Memory Th2 and Early Recall Responses to an Intestinal Nematode. Frontiers in Immunology, 2022, 13, 842870.	2.2	4
138	Allogeneic Liver Transplantation and Subsequent Syngeneic Hepatocyte Transplantation in a Rat Model: Proof of Concept for in vivo Tissue Engineering. Cells Tissues Organs, 2016, 201, 399-411.	1.3	3
139	Isolation, Characterization and Cold Storage of Cells Isolated from Diseased Explanted Livers. International Journal of Artificial Organs, 2017, 40, 294-306.	0.7	3
140	Sex-Associated Differences in Cytomegalovirus Prevention: Prophylactic Strategy is Potentially Associated With a Strong Kidney Function Impairment in Female Renal Transplant Patients. Frontiers in Pharmacology, 2020, 11, 534681.	1.6	3
141	EVIDENCE THAT TREATMENT WITH DHRS9+ REGULATORY MACROPHAGES INDUCED BY FCÎ ³ RIII LIGATION AND IFN-Î ³ STIMULATION PROMOTES RENAL ALLOGRAFT TOLERANCE IN PATIENTS. Transplantation, 2010, 90, 184.	0.5	2
142	Early prediction of renal graft function: Analysis of a multi-center, multi-level data set. Current Research in Translational Medicine, 2022, 70, 103334.	1.2	2
143	Liver Transplant Patients With Operational Tolerance: What Can the Graft Itself Tell Us?. American Journal of Transplantation, 2016, 16, 1049-1050.	2.6	1
144	IRF1 and BATF—transcription factors that set the epigenetic landscape for Tr1 cell differentiation?. Cellular and Molecular Immunology, 2017, 14, 727-729.	4.8	1

#	Article	IF	CITATIONS
145	Long-Term Signs of T Cell and Myeloid Cell Activation After Intestinal Transplantation With Cellular Rejections Contributing to Further Increase of CD16+ Cell Subsets. Frontiers in Immunology, 2019, 10, 866.	2.2	1
146	Relevance and targeting of memory T cells in transplantation. Arthritis Research and Therapy, 2011, 13, .	1.6	0
147	MAIT Cells as Drivers of Renal Fibrosis and CKD. Journal of the American Society of Nephrology: JASN, 2019, 30, 1145-1146.	3.0	0
148	Dialysis therapy is associated with peripheral marginal zone B-cell augmentation. Transplant Immunology, 2020, 60, 101289.	0.6	0
149	Comparative analysis of donor derived, gene modified dendritic cells in keratoplasty. Acta Ophthalmologica, 0, 85, 0-0.	0.4	0
150	Whole blood. , 2008, , 15-30.		0
151	Regulatory T Cells in Transplantation. , 2008, , 307-323.		0