List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1517060/publications.pdf Version: 2024-02-01

FDIEDEDIKE FI OTTO

#	Article	IF	CITATIONS
1	Stop blaming the climate for disasters. Communications Earth & Environment, 2022, 3, .	6.8	66
2	Integrating attribution with adaptation for unprecedented future heatwaves. Climatic Change, 2022, 172, 1.	3.6	7
3	The role of human-induced climate change in heavy rainfall events such as the one associated with Typhoon Hagibis. Climatic Change, 2022, 172, .	3.6	10
4	A multi-method framework for global real-time climate attribution. Advances in Statistical Climatology, Meteorology and Oceanography, 2022, 8, 135-154.	0.9	0
5	Attributing and Projecting Heatwaves Is Hard: We Can Do Better. Earth's Future, 2022, 10, .	6.3	39
6	Extreme weather impacts of climate change: an attribution perspective. , 2022, 1, 012001.		89
7	Inventories of extreme weather events and impacts: Implications for loss and damage from and adaptation to climate extremes. Climate Risk Management, 2021, 32, 100285.	3.2	31
8	Impact of precipitation and increasing temperatures on drought trends in eastern Africa. Earth System Dynamics, 2021, 12, 17-35.	7.1	32
9	Attribution of the Australian bushfire risk to anthropogenic climate change. Natural Hazards and Earth System Sciences, 2021, 21, 941-960.	3.6	171
10	A framework for complex climate change risk assessment. One Earth, 2021, 4, 489-501.	6.8	244
11	Pathways and pitfalls in extreme event attribution. Climatic Change, 2021, 166, 1.	3.6	86
12	Pathways of climate resilience over the 21st century. Environmental Research Letters, 2021, 16, 054058.	5.2	14
13	Prolonged Siberian heat of 2020 almost impossible without human influence. Climatic Change, 2021, 166, 9.	3.6	57
14	Filling the evidentiary gap in climate litigation. Nature Climate Change, 2021, 11, 651-655.	18.8	37
15	Deciphering Impacts and Human Responses to a Changing Climate in East Africa. Frontiers in Climate, 2021, 3, .	2.8	15
16	Anthropogenic climate change contribution to wildfire-prone weather conditions in the Cerrado and Arc of deforestation. Environmental Research Letters, 2021, 16, 094051.	5.2	6
17	Advancing the Evidence Base of Future Warming Impacts on Human Mobility in African Drylands. Earth's Future, 2021, 9, e2020EF001958.	6.3	19
18	Quantifying uncertainty in aggregated climate change risk assessments. Nature Communications, 2021, 12, 7140.	12.8	13

#	Article	IF	CITATIONS
19	Attribution of typhoon-induced torrential precipitation in Central Vietnam, October 2020. Climatic Change, 2021, 169, 1.	3.6	13
20	A pan-South-America assessment of avoided exposure to dangerous extreme precipitation by limiting to 1.5 °C warming. Environmental Research Letters, 2020, 15, 054005.	5.2	15
21	Reconciling theory with the reality of African heatwaves. Nature Climate Change, 2020, 10, 796-798.	18.8	66
22	Human contribution to the record-breaking June and July 2019 heatwaves in Western Europe. Environmental Research Letters, 2020, 15, 094077.	5.2	95
23	Present-day greenhouse gases could cause more frequent and longer Dust Bowl heatwaves. Nature Climate Change, 2020, 10, 505-510.	18.8	28
24	Ocean and land forcing of the record-breaking Dust Bowl heatwaves across central United States. Nature Communications, 2020, 11, 2870.	12.8	13
25	On High Precipitation in Mozambique, Zimbabwe and Zambia in February 2018. Bulletin of the American Meteorological Society, 2020, 101, S47-S52.	3.3	3
26	Challenges to Understanding Extreme Weather Changes in Lower Income Countries. Bulletin of the American Meteorological Society, 2020, 101, E1851-E1860.	3.3	25
27	Toward an Inventory of the Impacts of Human-Induced Climate Change. Bulletin of the American Meteorological Society, 2020, 101, E1972-E1979.	3.3	21
28	Using Detection And Attribution To Quantify How Climate Change Is Affecting Health. Health Affairs, 2020, 39, 2168-2174.	5.2	28
29	A protocol for probabilistic extreme event attribution analyses. Advances in Statistical Climatology, Meteorology and Oceanography, 2020, 6, 177-203.	0.9	103
30	Circulation analogues and uncertainty in the time-evolution of extreme event probabilities: evidence from the 1947 Central European heatwave. Climate Dynamics, 2019, 53, 2229-2247.	3.8	7
31	Cold waves are getting milder in the northern midlatitudes. Environmental Research Letters, 2019, 14, 114004.	5.2	38
32	Return period of extreme rainfall substantially decreases under 1.5 °C and 2.0 °C warming: a case study for Uttarakhand, India. Environmental Research Letters, 2019, 14, 044033.	5.2	19
33	Attributable damage liability in a non-linear climate. Climatic Change, 2019, 153, 15-20.	3.6	14
34	Human influence on European winter wind storms such as those of January 2018. Earth System Dynamics, 2019, 10, 271-286.	7.1	45
35	Embracing the complexity of extreme weather events when quantifying their likelihood of recurrence in a warming world. Environmental Research Letters, 2019, 14, 024018.	5.2	6
36	A Limited Role for Unforced Internal Variability in Twentieth-Century Warming. Journal of Climate, 2019. 32. 4893-4917	3.2	68

#	Article	IF	CITATIONS
37	Attributing the 2017 Bangladesh floods from meteorological and hydrological perspectives. Hydrology and Earth System Sciences, 2019, 23, 1409-1429.	4.9	46
38	The Impact of Humanâ€Induced Climate Change on Regional Drought in the Horn of Africa. Journal of Geophysical Research D: Atmospheres, 2019, 124, 4549-4566.	3.3	23
39	The Exceptional Summer Heat Wave in Southern Europe 2017. Bulletin of the American Meteorological Society, 2019, 100, S49-S53.	3.3	68
40	Science for Loss and Damage. Findings and Propositions. Climate Risk Management, Policy and Governance, 2019, , 3-37.	2.5	19
41	Attribution: How Is It Relevant for Loss and Damage Policy and Practice?. Climate Risk Management, Policy and Governance, 2019, , 113-154.	2.5	24
42	Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5 °C and 2 °C of warming. Environmental Research Letters, 2018, 034011.	13.2	52
43	Attributing drivers of the 2016 Kenyan drought. International Journal of Climatology, 2018, 38, e554.	3.5	82
44	Climate change increases the probability of heavy rains in Northern England/Southern Scotland like those of storm Desmond—a real-time event attribution revisited. Environmental Research Letters, 2018, 13, 024006.	5.2	73
45	Attribution Analysis of the Ethiopian Drought of 2015. Journal of Climate, 2018, 31, 2465-2486.	3.2	114
46	Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. Environmental Research Letters, 2018, 13, 124010.	5.2	123
47	Adapting attribution science to the climate extremes of tomorrow. Environmental Research Letters, 2018, 13, 123006.	5.2	18
48	Validation of a Rapid Attribution of the May/June 2016 Flood-Inducing Precipitation in France to Climate Change. Journal of Hydrometeorology, 2018, 19, 1881-1898.	1.9	31
49	Ensemble of European regional climate simulations for the winter of 2013 and 2014 from HadAM3P-RM3P. Scientific Data, 2018, 5, 180057.	5.3	4
50	A Multimethod Attribution Analysis of the Prolonged Northeast Brazil Hydrometeorological Drought (2012–16). Bulletin of the American Meteorological Society, 2018, 99, S65-S69.	3.3	41
51	How Uneven Are Changes to Impactâ€Relevant Climate Hazards in a 1.5 °C World and Beyond?. Geophysical Research Letters, 2018, 45, 6672-6680.	4.0	33
52	Extreme heat in India and anthropogenic climate change. Natural Hazards and Earth System Sciences, 2018, 18, 365-381.	3.6	111
53	Attributing high-impact extreme events across timescales—a case study of four different types of events. Climatic Change, 2018, 149, 399-412.	3.6	72
54	Stakeholder perceptions of event attribution in the loss and damage debate. Climate Policy, 2017, 17, 533-550.	5.1	27

#	Article	IF	CITATIONS
55	Assigning historic responsibility for extreme weather events. Nature Climate Change, 2017, 7, 757-759.	18.8	49
56	A typology of loss and damage perspectives. Nature Climate Change, 2017, 7, 723-729.	18.8	84
57	Attribution of Weather and Climate Events. Annual Review of Environment and Resources, 2017, 42, 627-646.	13.4	115
58	Contrasting and interacting changes in simulated spring and summer carbon cycle extremes in European ecosystems. Environmental Research Letters, 2017, 12, 075006.	5.2	32
59	Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environmental Research Letters, 2017, 12, 124009.	5.2	330
60	A real-time Global Warming Index. Scientific Reports, 2017, 7, 15417.	3.3	145
61	weather@home 2: validation of an improved global–regional climate modelling system. Geoscientific Model Development, 2017, 10, 1849-1872.	3.6	70
62	The Role of Anthropogenic Warming in 2015 Central European Heat Waves. Bulletin of the American Meteorological Society, 2016, 97, S51-S56.	3.3	34
63	Real-time extreme weather event attribution with forecast seasonal SSTs. Environmental Research Letters, 2016, 11, 064006.	5.2	37
64	A novel bias correction methodology for climate impact simulations. Earth System Dynamics, 2016, 7, 71-88.	7.1	75
65	The Heavy Precipitation Event of December 2015 in Chennai, India. Bulletin of the American Meteorological Society, 2016, 97, S87-S91.	3.3	45
66	Using a Game to Engage Stakeholders in Extreme Event Attribution Science. International Journal of Disaster Risk Science, 2016, 7, 353-365.	2.9	24
67	Perspectives on the causes of exceptionally low 2015 snowpack in the western United States. Geophysical Research Letters, 2016, 43, 10,980.	4.0	85
68	Comparison of methods: Attributing the 2014 record European temperatures to human influences. Geophysical Research Letters, 2016, 43, 8685-8693.	4.0	56
69	Attribution of extreme weather and climateâ€related events. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 23-41.	8.1	437
70	The attribution question. Nature Climate Change, 2016, 6, 813-816.	18.8	96
71	Multi-method attribution analysis of extreme precipitation in Boulder, Colorado. Environmental Research Letters, 2016, 11, 124009.	5.2	31
72	The art of attribution. Nature Climate Change, 2016, 6, 342-343.	18.8	46

#	Article	IF	CITATIONS
73	Human influence on climate in the 2014 southern England winter floods and their impacts. Nature Climate Change, 2016, 6, 627-634.	18.8	237
74	Causal Counterfactual Theory for the Attribution of Weather and Climate-Related Events. Bulletin of the American Meteorological Society, 2016, 97, 99-110.	3.3	118
75	Stakeholder Perspectives on the Attribution of Extreme Weather Events: An Explorative Enquiry. Weather, Climate, and Society, 2015, 7, 224-237.	1.1	35
76	Combining large model ensembles with extreme value statistics to improve attribution statements of rare events. Weather and Climate Extremes, 2015, 9, 25-35.	4.1	35
77	Attribution of extreme weather events in Africa: a preliminary exploration of the science and policy implications. Climatic Change, 2015, 132, 531-543.	3.6	72
78	weather@home—development and validation of a very large ensemble modelling system for probabilistic event attribution. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1528-1545.	2.7	156
79	The 2014 Drought in the Horn of Africa: Attribution of Meteorological Drivers. Bulletin of the American Meteorological Society, 2015, 96, S83-S88.	3.3	21
80	Ethical and normative implications of weather event attribution for policy discussions concerning loss and damage. Climatic Change, 2015, 133, 439-451.	3.6	50
81	Factors Other Than Climate Change, Main Drivers of 2014/15 Water Shortage in Southeast Brazil. Bulletin of the American Meteorological Society, 2015, 96, S35-S40.	3.3	73
82	Attribution analysis of high precipitation events in summer in England and Wales over the last decade. Climatic Change, 2015, 132, 77-91.	3.6	23
83	Equipped to deal with uncertainty in climate and impacts predictions: lessons from internal peer review. Climatic Change, 2015, 132, 1-14.	3.6	18
84	Attribution of extreme weather. Nature Geoscience, 2015, 8, 581-582.	12.9	13
85	Embracing uncertainty in climate change policy. Nature Climate Change, 2015, 5, 917-920.	18.8	53
86	On judging the credibility of climate predictions. Climatic Change, 2015, 132, 47-60.	3.6	5
87	Characterizing loss and damage from climate change. Nature Climate Change, 2014, 4, 938-939.	18.8	113
88	Beyond climatological extremes - assessing how the odds of hydrometeorological extreme events in South-East Europe change in a warming climate. Climatic Change, 2014, 125, 381-398.	3.6	57
89	Energy budget constraints on climate response. Nature Geoscience, 2013, 6, 415-416.	12.9	270
90	Attribution of changes in precipitation patterns in African rainforests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120299.	4.0	30

#	Article	IF	CITATIONS
91	Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophysical Research Letters, 2012, 39, .	4.0	323