Gareth A Palidwor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/151694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A General Model of Codon Bias Due to GC Mutational Bias. PLoS ONE, 2010, 5, e13431.	2.5	144
2	Transcriptional Dominance of Pax7 in Adult Myogenesis Is Due to High-Affinity Recognition of Homeodomain Motifs. Developmental Cell, 2012, 22, 1208-1220.	7.0	139
3	A complex of C9ORF72 and p62 uses arginine methylation to eliminate stress granules by autophagy. Nature Communications, 2018, 9, 2794.	12.8	126
4	Gene function in early mouse embryonic stem cell differentiation. BMC Genomics, 2007, 8, 85.	2.8	123
5	Study of stem cell function using microarray experiments. FEBS Letters, 2005, 579, 1795-1801.	2.8	66
6	Detection of Alpha-Rod Protein Repeats Using a Neural Network and Application to Huntingtin. PLoS Computational Biology, 2009, 5, e1000304.	3.2	59
7	Transcriptional profiling of skeletal muscle reveals factors that are necessary to maintain satellite cell integrity during ageing. Mechanisms of Ageing and Development, 2010, 131, 9-20.	4.6	37
8	Mtf2-PRC2 control of canonical Wnt signaling is required for definitive erythropoiesis. Cell Discovery, 2018, 4, 21.	6.7	37
9	Reprogramming progeria fibroblasts reâ€establishes a normal epigenetic landscape. Aging Cell, 2017, 16, 870-887.	6.7	34
10	MaSC: mappability-sensitive cross-correlation for estimating mean fragment length of single-end short-read sequencing data. Bioinformatics, 2013, 29, 444-450.	4.1	31
11	Towards completion of the Earth's proteome. EMBO Reports, 2007, 8, 1135-1141.	4.5	30
12	Functional and Genomic Analyses of Alpha-Solenoid Proteins. PLoS ONE, 2013, 8, e79894.	2.5	26
13	StemBase. Methods in Molecular Biology, 2007, 407, 137-148.	0.9	24
14	An OTX2-PAX3 signaling axis regulates Group 3 medulloblastoma cell fate. Nature Communications, 2020, 11, 3627.	12.8	21
15	Genomic Adaptation to Acidic Environment: Evidence fromHelicobacter pylori. American Naturalist, 2005, 166, 776-784.	2.1	18
16	Recent developments in StemBase: a tool to study gene expression in human and murine stem cells. BMC Research Notes, 2009, 2, 39.	1.4	18
17	BIDCHIPS: bias decomposition and removal from ChIP-seq data clarifies true binding signal and its functional correlates. Epigenetics and Chromatin, 2015, 8, 33.	3.9	17
18	Characterization of a novel <scp>OTX</scp> 2â€driven stem cell program in Group 3 and Group 4 medulloblastoma. Molecular Oncology, 2018, 12, 495-513.	4.6	16

GARETH A PALIDWOR

#	Article	IF	CITATIONS
19	ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation. BMC Genomics, 2007, 8, 322.	2.8	13
20	Chromatin tandem affinity purification sequencing. Nature Protocols, 2013, 8, 1525-1534.	12.0	13
21	Cis-regulatory determinants of MyoD function. Nucleic Acids Research, 2018, 46, 7221-7235.	14.5	11
22	Taxonomic colouring of phylogenetic trees of protein sequences. BMC Bioinformatics, 2006, 7, 79.	2.6	9
23	Accuracy and reproducibility of somatic point mutation calling in clinical-type targeted sequencing data. BMC Medical Genomics, 2020, 13, 156.	1.5	8
24	MLTrends: Graphing MEDLINE term usage over time. Journal of Biomedical Discovery and Collaboration, 2010, 5, 1-6.	2.0	6
25	Peer2ref: a peer-reviewer finding web tool that uses author disambiguation. BioData Mining, 2012, 5, 14.	4.0	3
26	A genome-wide strategy to identify causes and consequences of retrotransposon expression finds activation by BRCA1 in ovarian cancer. NAR Cancer, 2021, 3, zcaa040.	3.1	2
27	Acknowledging contributions to online expert assistance. Nature Precedings, 2011, , .	0.1	0
28	MEDU-14. OTX2 CONTROLS AN AXON GUIDANCE GENE EXPRESSION NETWORK TO REGULATE MEDULLOBLASTOMA SELF-RENEWAL. Neuro-Oncology, 2017, 19, iv40-iv40.	1.2	0
29	MEDU-04. AN OTX2-PAX GENE NETWORK REGULATES GROUP 3 MEDULLOBLASTOMA DIFFERENTIATION AND TUMOR GROWTH. Neuro-Oncology, 2019, 21, ii103-ii104.	1.2	0
30	PDTM-28. AN OTX2-PAX3 SIGNALLING AXIS REGULATES GROUP 3 MEDULLOBLASTOMA CELL FATE. Neuro-Oncology, 2019, 21, vi193-vi193.	1.2	0