Yongjin Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1516937/publications.pdf

Version: 2024-02-01

394421 395702 1,703 34 19 33 citations h-index g-index papers 34 34 34 2048 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Deciphering van der Waals interaction between polypropylene and carbonated fly ash from experimental and molecular simulation. Journal of Hazardous Materials, 2022, 421, 126725.	12.4	5
2	In Silico Generation of a Topologically Diverse Zeolite-Templated Carbon Library. Crystal Growth and Design, 2022, 22, 123-130.	3.0	3
3	Control over interpenetration for boosting methane storage capacity in metal–organic frameworks. Journal of Materials Chemistry A, 2021, 9, 24857-24862.	10.3	14
4	Machine Learning-Driven Discovery of Metal–Organic Frameworks for Efficient CO ₂ Capture in Humid Condition. ACS Sustainable Chemistry and Engineering, 2021, 9, 2872-2879.	6.7	34
5	Coating the Right Polymer: Achieving Ideal Metal–Organic Framework Particle Dispersibility in Polymer Matrixes Using a Coordinative Crosslinking Surface Modification Method. Angewandte Chemie, 2021, 133, 14257-14264.	2.0	14
6	Coating the Right Polymer: Achieving Ideal Metal–Organic Framework Particle Dispersibility in Polymer Matrixes Using a Coordinative Crosslinking Surface Modification Method. Angewandte Chemie - International Edition, 2021, 60, 14138-14145.	13.8	48
7	Physicochemical Understanding of the Impact of Pore Environment and Species of Adsorbates on Adsorption Behaviour. Angewandte Chemie, 2021, 133, 20667-20673.	2.0	1
8	Physicochemical Understanding of the Impact of Pore Environment and Species of Adsorbates on Adsorption Behaviour. Angewandte Chemie - International Edition, 2021, 60, 20504-20510.	13.8	8
9	Machine Learning-based approach for Tailor-Made design of ionic Liquids: Application to CO2 capture. Separation and Purification Technology, 2021, 275, 119117.	7.9	17
10	<i>In Situ</i> Mapping and Local Negative Uptake Behavior of Adsorbates in Individual Pores of Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 20747-20757.	13.7	5
11	A computational study to design zeolite-templated carbon materials with high performance for CO2/N2 separation. Microporous and Mesoporous Materials, 2020, 295, 109947.	4.4	12
12	Machine Learning Enabled Tailor-Made Design of Application-Specific Metal–Organic Frameworks. ACS Applied Materials & Design of Application	8.0	42
13	Enhancing the Gas Separation Selectivity of Mixed-Matrix Membranes Using a Dual-Interfacial Engineering Approach. Journal of the American Chemical Society, 2020, 142, 18503-18512.	13.7	86
14	Tuning Metal–Organic Framework Nanocrystal Shape through Facet-Dependent Coordination. Nano Letters, 2020, 20, 1774-1780.	9.1	52
15	Understanding the diversity of the metal-organic framework ecosystem. Nature Communications, 2020, 11, 4068.	12.8	282
16	Robust Metal–Triazolate Frameworks for CO ₂ Capture from Flue Gas. Journal of the American Chemical Society, 2020, 142, 2750-2754.	13.7	159
17	Engineering plasticization resistant gas separation membranes using metal–organic nanocapsules. Chemical Science, 2020, 11, 4687-4694.	7.4	22
18	Tracking and Visualization of Functional Domains in Stratified Metal–Organic Frameworks Using Gold Nanoparticles. ACS Central Science, 2020, 6, 247-253.	11.3	13

#	Article	IF	CITATIONS
19	Machine Learning Prediction on Properties of Nanoporous Materials Utilizing Pore Geometry Barcodes. Journal of Chemical Information and Modeling, 2019, 59, 4636-4644.	5.4	29
20	Understanding Adsorption Behavior of Periodic Mesoporous Organosilica Having a Heterogeneous Chemical Environment: Selective Coverage and Interpenetration of Adsorbates inside the Channel Wall. Journal of Physical Chemistry C, 2019, 123, 24884-24889.	3.1	6
21	A generalizable method for the construction of MOF@polymer functional composites through surface-initiated atom transfer radical polymerization. Chemical Science, 2019, 10, 1816-1822.	7.4	75
22	General Way To Construct Micro- and Mesoporous Metal–Organic Framework-Based Porous Liquids. Journal of the American Chemical Society, 2019, 141, 19708-19714.	13.7	111
23	Strong thermal conductivity dependence on arsenic-vacancy complex formation in arsenic-doped silicon. Journal of Applied Physics, 2019, 126, 195104.	2.5	1
24	High-Throughput Screening Approach for Nanoporous Materials Genome Using Topological Data Analysis: Application to Zeolites. Journal of Chemical Theory and Computation, 2018, 14, 4427-4437.	5. 3	53
25	Generating carbon schwarzites via zeolite-templating. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8116-E8124.	7.1	88
26	Quantifying similarity of pore-geometry in nanoporous materials. Nature Communications, 2017, 8, 15396.	12.8	98
27	Engineering of Pore Geometry for Ultrahigh Capacity Methane Storage in Mesoporous Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 13300-13303.	13.7	140
28	Computational development of the nanoporous materials genome. Nature Reviews Materials, 2017, 2, .	48.7	123
29	What is the thermal conductivity limit of silicon germanium alloys?. Physical Chemistry Chemical Physics, 2016, 18, 19544-19548.	2.8	18
30	Fundamental insight into control of thermal conductivity in silicon-germanium alloy nanowires. Materials Research Society Symposia Proceedings, 2014, 1707, 31.	0.1	0
31	Microsegregation effects on the thermal conductivity of silicon-germanium alloys. Journal of Applied Physics, 2013, 114, 174910.	2.5	12
32	Mechanism of thermal conductivity suppression in doped silicon studied with nonequilibrium molecular dynamics. Physical Review B, 2012, 86, .	3.2	30
33	Force-matching-based parameterization of the Stillinger-Weber potential for thermal conduction in silicon. Physical Review B, 2012, 85, .	3.2	37
34	Effects of vacancy defects on thermal conductivity in crystalline silicon: A nonequilibrium molecular dynamics study. Physical Review B, 2011, 83, .	3.2	65