Wei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1516886/publications.pdf Version: 2024-02-01

MEL MANC

#	Article	IF	CITATIONS
1	Visible-light-driven intramolecular xanthylation of remote unactivated C(sp3)-H bonds. Green Synthesis and Catalysis, 2023, 4, 350-354.	6.8	10
2	Palladium-catalyzed base- and solvent-controlled chemoselective allylation of amino acids with allylic carbonates. Chinese Chemical Letters, 2022, 33, 4850-4855.	9.0	11
3	TfOH-catalyzed regioselective <i>N</i> ² -alkylation of indazoles with diazo compounds. Chemical Communications, 2022, 58, 6429-6432.	4.1	11
4	An Efficient Approach to Access 2,2â€Diarylanilines via Visibleâ€Lightâ€Promoted Decarboxylative Crossâ€Coupling Reactions. Asian Journal of Organic Chemistry, 2021, 10, 2342-2346.	2.7	6
5	Selective Synthesis of <i>Z</i> innamyl Ethers and Cinnamyl Alcohols through Visible Lightâ€Promoted Photocatalytic <i>E</i> to <i>Z</i> Isomerization. Chemistry - an Asian Journal, 2020, 15, 555-559.	3.3	25
6	Regio- and Enantioselective Palladium-Catalyzed Asymmetric Allylation of <i>N</i> -Fluorenyl Trifluoromethyl Imine. Organic Letters, 2020, 22, 5479-5485.	4.6	18
7	An Efficient Palladium Nanoparticles Catalytic System for Suzuki Coupling Reactions. Chinese Journal of Organic Chemistry, 2019, 39, 3207.	1.3	1
8	A Convenient Access to 3-Substituted Benzofuran Derivatives via Palladium Nanoparticles-Catalyzed Intramolecular Heck Reaction. Chinese Journal of Organic Chemistry, 2019, 39, 456.	1.3	4
9	An Approach to the Synthesis of 1-Propenylnaphthols and 3-Arylnaphtho[2,1- <i>b</i>]furans. Journal of Organic Chemistry, 2017, 82, 2523-2534.	3.2	13
10	Synthesis of <i>Z</i> -alkenes <i>via</i> visible light promoted photocatalytic <i>E</i> → <i>Z</i> isomerization under metal-free conditions. Chemical Communications, 2017, 53, 12918-12921.	4.1	60
11	Palladium atalyzed Domino Reaction of Two Aryl Iodides involving C–H Activation Processes: Efficient Synthesis of Fused Polycycles. European Journal of Organic Chemistry, 2016, 2016, 5616-5619.	2.4	13
12	A Simple and Efficient Access to Naphtho[<i>b</i>]furans by Claisen Rearrangement/Cyclization of Bromonaphthyl 3â€Phenylallyl Ethers. Advanced Synthesis and Catalysis, 2015, 357, 2442-2446.	4.3	14
13	N,N,N′,N′-tetra(diphenylphosphinomethyl)pyridine-2,6-diamine/palladium catalyzed Suzuki–Miyaura coupling of aryl and heteroaryl halides. Catalysis Communications, 2015, 66, 87-90.	3.3	16
14	Palladium atalyzed Domino Mizoroki–Heck/Intermolecular C(sp ³)–H Activation Sequence: An Approach to the Formation of C(sp ³)–C(sp ³) Bonds. European Journal of Organic Chemistry, 2015, 2015, 2579-2584.	2.4	15
15	An Efficient Palladium atalyzed Synthesis of Cinnamyl Ethers from Aromatic Halides, Phenols, and Allylic Chloride. Advanced Synthesis and Catalysis, 2014, 356, 616-622.	4.3	9
16	One-pot synthesis of 2-substituted benzo[b]furans via Pd–tetraphosphine catalyzed coupling of 2-halophenols with alkynes. Chemical Communications, 2014, 50, 6023-6026.	4.1	70
17	Pd/tetraphosphine catalytic system for Cu-free Sonogashira reaction "on water― Catalysis Science and Technology, 2014, 4, 746.	4.1	25
18	6H-Dibenzo[d,f-[1,3]diazepin-6-ylidene,5,7-dihydro-5,7-diphenylphosphanyl]: A new ligand for palladium-catalyzed Mizoroki–Heck coupling. Catalysis Communications, 2014, 57, 14-18.	3.3	9

#	Article	IF	CITATIONS
19	An Easily Prepared Tetraphosphine and Its Use in the Palladium-Catalyzed Suzuki–Miyaura Coupling of Aryl Chlorides. Catalysis Letters, 2013, 143, 1214-1219.	2.6	7
20	Palladium nanoparticles generated from allylpalladium chloride in situ: A simple and highly efficient catalytic system for Mizoroki–Heck reactions. Journal of Organometallic Chemistry, 2012, 697, 1-5.	1.8	25