Stephen M Smith

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1516829/stephen-m-smith-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

280 105 107,029 314 h-index g-index citations papers 8.53 8.9 131,317 314 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
280	Multi-dynamic modelling reveals strongly time-varying resting fMRI correlations <i>Medical Image Analysis</i> , 2022 , 77, 102366	15.4	2
279	SARS-CoV-2 is associated with changes in brain structure in UK Biobank <i>Nature</i> , 2022 ,	50.4	74
278	Common variants contribute to intrinsic human brain functional networks <i>Nature Genetics</i> , 2022 , 54, 508-517	36.3	1
277	Deep neural networks learn general and clinically relevant representations of the ageing brain <i>NeuroImage</i> , 2022 , 256, 119210	7.9	3
276	A structural brain network of genetic vulnerability to psychiatric illness. <i>Molecular Psychiatry</i> , 2021 , 26, 2089-2100	15.1	6
275	Individual variations in 'brain age' relate to early-life factors more than to longitudinal brain change. <i>ELife</i> , 2021 , 10,	8.9	11
274	Leisure Activities and Their Relationship With MRI Measures of Brain Structure, Functional Connectivity, and Cognition in the UK Biobank Cohort. <i>Frontiers in Aging Neuroscience</i> , 2021 , 13, 734866	5.3	1
273	Adapting the UK Biobank Brain Imaging Protocol and Analysis Pipeline for the C-MORE Multi-Organ Study of COVID-19 Survivors. <i>Frontiers in Neurology</i> , 2021 , 12, 753284	4.1	2
272	Brain pathology recapitulates physiology: A network meta-analysis. <i>Communications Biology</i> , 2021 , 4, 301	6.7	6
271	The Developing Human Connectome Project: typical and disrupted perinatal functional connectivity. <i>Brain</i> , 2021 , 144, 2199-2213	11.2	18
270	Phenotyping the Preterm Brain: Characterizing Individual Deviations From Normative Volumetric Development in Two Large Infant Cohorts. <i>Cerebral Cortex</i> , 2021 , 31, 3665-3677	5.1	3
269	The nonhuman primate neuroimaging and neuroanatomy project. Neurolmage, 2021, 229, 117726	7.9	21
268	An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. <i>Nature Neuroscience</i> , 2021 , 24, 737-745	25.5	27
267	Optimising a Simple Fully Convolutional Network for Accurate Brain Age Prediction in the PAC 2019 Challenge. <i>Frontiers in Psychiatry</i> , 2021 , 12, 627996	5	4
266	Dopaminergic organization of striatum is linked to cortical activity and brain expression of genes associated with psychiatric illness. <i>Science Advances</i> , 2021 , 7,	14.3	3
265	Brain imaging before and after COVID-19 in UK Biobank 2021 ,		31
264	Phenotype discovery from population brain imaging. <i>Medical Image Analysis</i> , 2021 , 71, 102050	15.4	5

(2020-2021)

263	Confound modelling in UK Biobank brain imaging. <i>NeuroImage</i> , 2021 , 224, 117002	7.9	40
262	Shared and Anxiety-Specific Pediatric Psychopathology Dimensions Manifest Distributed Neural Correlates. <i>Biological Psychiatry</i> , 2021 , 89, 579-587	7.9	1
261	Learning patterns of the ageing brain in MRI using deep convolutional networks. <i>NeuroImage</i> , 2021 , 224, 117401	7.9	27
260	Accurate brain age prediction with lightweight deep neural networks. <i>Medical Image Analysis</i> , 2021 , 68, 101871	15.4	60
259	Multimodal Imaging Brain Markers in Early Adolescence Are Linked with a Physically Active Lifestyle. <i>Journal of Neuroscience</i> , 2021 , 41, 1092-1104	6.6	1
258	Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. <i>EClinicalMedicine</i> , 2021 , 31, 100683	11.3	164
257	Relationships between retinal layer thickness and brain volumes in the UK Biobank cohort. <i>European Journal of Neurology</i> , 2021 , 28, 1490-1498	6	5
256	Hierarchical modelling of functional brain networks in population and individuals from big fMRI data. <i>NeuroImage</i> , 2021 , 243, 118513	7.9	Ο
255	The Human Connectome Project: A retrospective. <i>NeuroImage</i> , 2021 , 244, 118543	7.9	15
254	Towards HCP-Style macaque connectomes: 24-Channel 3T multi-array coil, MRI sequences and preprocessing. <i>Neurolmage</i> , 2020 , 215, 116800	7.9	28
253	Patterns of sociocognitive stratification and perinatal risk in the child brain. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 12419-12427	11.5	19
252	The UK Biobank imaging enhancement of 100,000 participants: rationale, data collection, management and future directions. <i>Nature Communications</i> , 2020 , 11, 2624	17.4	81
251	Common Genetic Variation Indicates Separate Causes for Periventricular and Deep White Matter Hyperintensities. <i>Stroke</i> , 2020 , 51, 2111-2121	6.7	23
250	A Symmetric Prior for the Regularisation of Elastic Deformations: Improved anatomical plausibility in nonlinear image registration. <i>NeuroImage</i> , 2020 , 219, 116962	7.9	3
249	Permutation inference for canonical correlation analysis. <i>NeuroImage</i> , 2020 , 220, 117065	7.9	16
248	Optimising network modelling methods for fMRI. <i>NeuroImage</i> , 2020 , 211, 116604	7.9	73
247	Multimodal MRI Template Creation in he ling-Tailed Lemur and Rhesus Macaque. Lecture Notes in Computer Science, 2020, 141-150	0.9	
246	Discovering correlates of age-related decline in a healthy late-midlife male birth cohort. <i>Aging</i> , 2020 , 12, 16709-16743	5.6	O

245	Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations. <i>ELife</i> , 2020 , 9,	8.9	56
244	Denoising scanner effects from multimodal MRI data using linked independent component analysis. <i>Neurolmage</i> , 2020 , 208, 116388	7.9	16
243	The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants. <i>NeuroImage</i> , 2020 , 223, 117303	7.9	28
242	Modelling subject variability in the spatial and temporal characteristics of functional modes. <i>NeuroImage</i> , 2020 , 222, 117226	7.9	15
241	Challenges and future directions for representations of functional brain organization. <i>Nature Neuroscience</i> , 2020 , 23, 1484-1495	25.5	35
240	A data-driven approach to optimising the encoding for multi-shell diffusion MRI with application to neonatal imaging. <i>NMR in Biomedicine</i> , 2020 , 33, e4348	4.4	8
239	Cerebrovascular risk factors impact frontoparietal network integrity and executive function in healthy ageing. <i>Nature Communications</i> , 2020 , 11, 4340	17.4	22
238	Handedness, language areas and neuropsychiatric diseases: insights from brain imaging and genetics. <i>Brain</i> , 2019 , 142, 2938-2947	11.2	67
237	Estimation of brain age delta from brain imaging. <i>NeuroImage</i> , 2019 , 200, 528-539	7.9	118
236	Structural Variability in the Human Brain Reflects Fine-Grained Functional Architecture at the Population Level. <i>Journal of Neuroscience</i> , 2019 , 39, 6136-6149	6.6	18
235	Effective degrees of freedom of the Pearson's correlation coefficient under autocorrelation. <i>NeuroImage</i> , 2019 , 199, 609-625	7.9	49
234	Classification of temporal ICA components for separating global noise from fMRI data: Reply to Power. <i>NeuroImage</i> , 2019 , 197, 435-438	7.9	26
233	The spatial correspondence and genetic influence of interhemispheric connectivity with white matter microstructure. <i>Nature Neuroscience</i> , 2019 , 22, 809-819	25.5	31
232	Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project. <i>NeuroImage</i> , 2019 , 185, 750-763	7.9	59
231	Towards Algorithmic Analytics for Large-scale Datasets. <i>Nature Machine Intelligence</i> , 2019 , 1, 296-306	22.5	34
230	Hippocampal volume across age: Nomograms derived from over 19,700 people in UK Biobank. <i>NeuroImage: Clinical</i> , 2019 , 23, 101904	5.3	64
229	Discovering markers of healthy aging: a prospective study in a Danish male birth cohort. <i>Aging</i> , 2019 , 11, 5943-5974	5.6	5
228	The relationship between spatial configuration and functional connectivity of brain regions revisited. <i>ELife</i> , 2019 , 8,	8.9	34

(2018-2019)

Optimising neonatal fMRI data analysis: Design and validation of an extended dHCP preprocessing pipeline to characterise noxious-evoked brain activity in infants. <i>NeuroImage</i> , 2019 , 186, 286-300	7.9	17
The Lifespan Human Connectome Project in Aging: An overview. <i>Neurolmage</i> , 2019 , 185, 335-348	7.9	74
Using GPUs to accelerate computational diffusion MRI: From microstructure estimation to tractography and connectomes. <i>NeuroImage</i> , 2019 , 188, 598-615	7.9	48
Spatial parcellations, spectral filtering, and connectivity measures in fMRI: Optimizing for discrimination. <i>Human Brain Mapping</i> , 2019 , 40, 407-419	5.9	17
Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to increase statistical power. <i>NeuroImage</i> , 2019 , 185, 12-26	7.9	33
Disambiguating brain functional connectivity. <i>NeuroImage</i> , 2018 , 173, 540-550	7.9	38
Directed functional connectivity using dynamic graphical models. <i>NeuroImage</i> , 2018 , 175, 340-353	7.9	17
The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. <i>NeuroImage</i> , 2018 , 173, 88-112	7.9	158
Statistical Challenges in "Big Data" Human Neuroimaging. <i>Neuron</i> , 2018 , 97, 263-268	13.9	174
Discovering dynamic brain networks from big data in rest and task. <i>Neurolmage</i> , 2018 , 180, 646-656	7.9	137
Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. <i>NeuroImage</i> , 2018 , 166, 400-424	7.9	415
Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data. <i>NeuroImage</i> , 2018 , 181, 692-717	7.9	155
Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks. <i>NeuroImage</i> , 2018 , 178, 370-384	7.9	12
The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5-21 year olds. <i>NeuroImage</i> , 2018 , 183, 456-468	7.9	71
Stratification of MDD and GAD patients by resting state brain connectivity predicts cognitive bias. <i>NeuroImage: Clinical</i> , 2018 , 19, 425-433	5.3	16
Construction of a neonatal cortical surface atlas using Multimodal Surface Matching in the Developing Human Connectome Project. <i>Neurolmage</i> , 2018 , 179, 11-29	7.9	45
Author response: The relationship between spatial configuration and functional connectivity of brain regions 2018 ,		12
The Developing Human Connectome Project: a Minimal Processing Pipeline for Neonatal Cortical Surface Reconstruction 2018 , 173, 88-112		88
	The Lifespan Human Connectome Project in Aging: An overview. <i>NeuroImage</i> , 2019 , 185, 335-348 Using CPUs to accelerate computational diffusion MRI: From microstructure estimation to tractography and connectomes. <i>NeuroImage</i> , 2019 , 188, 598-615 Spatial parcellations, spectral filtering, and connectivity measures in fMRI: Optimizing for discrimination. <i>Human Brain Mapping</i> , 2019 , 40, 407-419 Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to increase statistical power. <i>NeuroImage</i> , 2019 , 185, 12-26 Disambiguating brain functional connectivity. <i>NeuroImage</i> , 2018 , 173, 540-550 Directed functional connectivity using dynamic graphical models. <i>NeuroImage</i> , 2018 , 175, 340-353 The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. <i>NeuroImage</i> , 2018 , 173, 88-112 Statistical Challenges in "Big Data" Human Neuroimaging. <i>Neuron</i> , 2018 , 97, 263-268 Discovering dynamic brain networks from big data in rest and task. <i>NeuroImage</i> , 2018 , 180, 646-656 Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. <i>NeuroImage</i> , 2018 , 166, 400-424 Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data. <i>NeuroImage</i> , 2018 , 181, 692-717 Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks. <i>NeuroImage</i> , 2018 , 178, 370-384 The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5-21 year olds. <i>NeuroImage</i> , 2018 , 183, 456-468 Stratification of MDD and GAD patients by resting state brain connectivity predicts cognitive bias. <i>NeuroImage</i> : <i>Clinical</i> , 2018 , 19, 425-433 Construction of a neonatal cortical surface atlas using Multimodal Surface Matching in the Developing Human Connectome Project: a Minimal Processing Pipeline for Neonatal Cortical	The Lifespan Human Connectome Project in Aging: An overview. NeuroImage, 2019, 186, 286-300 The Lifespan Human Connectome Project in Aging: An overview. NeuroImage, 2019, 185, 335-348 79 Using GPUs to accelerate computational diffusion MRI: From microstructure estimation to tractography and connectomes. NeuroImage, 2019, 188, 598-615 Spatial parcellations, spectral filtering, and connectivity measures in fMRI: Optimizing for discrimination. Human Brain Mapping, 2019, 40, 407-419 Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to increase statistical power. NeuroImage, 2019, 185, 12-26 Disambiguating brain functional connectivity. NeuroImage, 2018, 173, 540-550 79 Directed functional connectivity using dynamic graphical models. NeuroImage, 2018, 175, 340-353 79 The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. NeuroImage, 2018, 173, 88-112 Statistical Challenges in "Big Data" Human NeuroImaging. Neuron, 2018, 97, 263-268 13-9 Discovering dynamic brain networks from big data in rest and task. NeuroImage, 2018, 180, 646-656 79 Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank. NeuroImage, 2018, 166, 400-424 Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data. NeuroImage, 2018, 181, 692-717 Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks. NeuroImage, 2018, 178, 370-384 The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5-21 year olds. NeuroImage, 2018, 183, 456-468 Stratification of MDD and GAD patients by resting state brain connectivity predicts cognitive bias. NeuroImage: Clinical, 2018, 19, 425-433 53 Construction of a neonatal cortical surface atlas using Multimodal Surface Matching in the Developing Human Connectome Project: a Minimal Processing Pipeline for Neonatal Cortic

209	Multimodal surface matching with higher-order smoothness constraints. <i>NeuroImage</i> , 2018 , 167, 453-46 5 .9		124
208	Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects. <i>Neurolmage</i> , 2018 , 183, 972-984	7.9	101
207	Genome-wide association studies of brain imaging phenotypes in UK Biobank. <i>Nature</i> , 2018 , 562, 210-2	.1 6 0.4	282
206	A Machine Learning Approach to Diffusion MRI Partial Volume Estimation. <i>Lecture Notes in Computer Science</i> , 2018 , 42-51	0.9	
205	The relationship between spatial configuration and functional connectivity of brain regions. <i>ELife</i> , 2018 , 7,	8.9	105
204	Heterogeneous fractionation profiles of meta-analytic coactivation networks. <i>NeuroImage</i> , 2017 , 149, 424-435	7.9	6
203	Studying neuroanatomy using MRI. <i>Nature Neuroscience</i> , 2017 , 20, 314-326	25.5	147
202	Tradeoffs in pushing the spatial resolution of fMRI for the 7T Human Connectome Project. <i>NeuroImage</i> , 2017 , 154, 23-32	7.9	68
201	Hand classification of fMRI ICA noise components. <i>NeuroImage</i> , 2017 , 154, 188-205	7.9	249
200	Brain network dynamics are hierarchically organized in time. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 12827-12832	11.5	311
199	Distinct resting-state functional connections associated with episodic and visuospatial memory in older adults. <i>NeuroImage</i> , 2017 , 159, 122-130	7.9	12
198	Investigations into within- and between-subject resting-state amplitude variations. <i>NeuroImage</i> , 2017 , 159, 57-69	7.9	51
197	Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses. <i>Frontiers in Neuroscience</i> , 2017 , 11, 115	5.1	183
196	The heritability of multi-modal connectivity in human brain activity. ELife, 2017, 6,	8.9	62
195	The Human Connectome Project's neuroimaging approach. <i>Nature Neuroscience</i> , 2016 , 19, 1175-87	25.5	482
194	Multimodal population brain imaging in the UK Biobank prospective epidemiological study. <i>Nature Neuroscience</i> , 2016 , 19, 1523-1536	25.5	739
193	A multi-modal parcellation of human cerebral cortex. <i>Nature</i> , 2016 , 536, 171-178	50.4	2046
192	Faster permutation inference in brain imaging. <i>Neurolmage</i> , 2016 , 141, 502-516	7.9	136

191	Linking cognition to brain connectivity. <i>Nature Neuroscience</i> , 2016 , 19, 7-9	25.5	33
190	The brain functional connectome is robustly altered by lack of sleep. <i>NeuroImage</i> , 2016 , 127, 324-332	7.9	81
189	Statistical Analysis of fMRI Data. <i>Neuromethods</i> , 2016 , 183-239	0.4	1
188	Non-parametric combination and related permutation tests for neuroimaging. <i>Human Brain Mapping</i> , 2016 , 37, 1486-511	5.9	122
187	Accelerating functional MRI using fixed-rank approximations and radial-cartesian sampling. <i>Magnetic Resonance in Medicine</i> , 2016 , 76, 1825-1836	4.4	22
186	Functional Connectivity under Anticipation of Shock: Correlates of Trait Anxious Affect versus Induced Anxiety. <i>Journal of Cognitive Neuroscience</i> , 2015 , 27, 1840-53	3.1	17
185	Brain atrophy in cognitively impaired elderly: the importance of long-chain B fatty acids and B vitamin status in a randomized controlled trial. <i>American Journal of Clinical Nutrition</i> , 2015 , 102, 215-21	7	115
184	Disintegration of Sensorimotor Brain Networks in Schizophrenia. Schizophrenia Bulletin, 2015, 41, 1326-	-3153	99
183	Learning to identify CNS drug action and efficacy using multistudy fMRI data. <i>Science Translational Medicine</i> , 2015 , 7, 274ra16	17.5	71
182	A positive-negative mode of population covariation links brain connectivity, demographics and behavior. <i>Nature Neuroscience</i> , 2015 , 18, 1565-7	25.5	551
181	Resting-State Networks. <i>Biological Magnetic Resonance</i> , 2015 , 387-425	0.5	O
180	Multi-level block permutation. <i>NeuroImage</i> , 2015 , 123, 253-68	7.9	137
179	k-t FASTER: Acceleration of functional MRI data acquisition using low rank constraints. <i>Magnetic Resonance in Medicine</i> , 2015 , 74, 353-64	4.4	49
178	Effective artifact removal in resting state fMRI data improves detection of DMN functional connectivity alteration in Alzheimer's disease. <i>Frontiers in Human Neuroscience</i> , 2015 , 9, 449	3.3	35
177	ICA-based artifact removal diminishes scan site differences in multi-center resting-state fMRI. <i>Frontiers in Neuroscience</i> , 2015 , 9, 395	5.1	37
176	Large-scale probabilistic functional modes from resting state fMRI. <i>NeuroImage</i> , 2015 , 109, 217-31	7.9	67
175	Attentional load modulates large-scale functional brain connectivity beyond the core attention networks. <i>NeuroImage</i> , 2015 , 109, 260-72	7.9	30
174	Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers. <i>NeuroImage</i> , 2014 , 90, 449-68	7.9	995

173	Resting state correlates of subdimensions of anxious affect. <i>Journal of Cognitive Neuroscience</i> , 2014 , 26, 914-26	3.1	30
172	ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. <i>NeuroImage</i> , 2014 , 95, 232-47	7.9	708
171	Group-PCA for very large fMRI datasets. <i>NeuroImage</i> , 2014 , 101, 738-49	7.9	157
170	Study protocol: The Whitehall II imaging sub-study. <i>BMC Psychiatry</i> , 2014 , 14, 159	4.2	58
169	Permutation inference for the general linear model. <i>NeuroImage</i> , 2014 , 92, 381-97	7.9	1884
168	Optimizing full-brain coverage in human brain MRI through population distributions of brain size. <i>NeuroImage</i> , 2014 , 98, 513-20	7.9	23
167	MSM: a new flexible framework for Multimodal Surface Matching. <i>NeuroImage</i> , 2014 , 100, 414-26	7.9	347
166	Fast transient networks in spontaneous human brain activity. ELife, 2014, 3, e01867	8.9	295
165	MVPA to enhance the study of rare cognitive events: An investigation of experimental PTSD 2014,		2
164	Cross-Subject Comparison of Local Diffusion MRI Parameters 2014 , 209-239		2
163	Increased resting state functional connectivity in the default mode network in recovered anorexia nervosa. <i>Human Brain Mapping</i> , 2014 , 35, 483-91	5.9	82
162	A common brain network links development, aging, and vulnerability to disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 17648-53	11.5	173
161	First steps in using machine learning on fMRI data to predict intrusive memories of traumatic film footage. <i>Behaviour Research and Therapy</i> , 2014 , 62, 37-46	5.2	22
160	Local GABA concentration is related to network-level resting functional connectivity. <i>ELife</i> , 2014 , 3, e0 ⁻⁷	14865	120
159	Spatially constrained hierarchical parcellation of the brain with resting-state fMRI. <i>NeuroImage</i> , 2013 , 76, 313-24	7.9	158
158	Functional connectomics from resting-state fMRI. <i>Trends in Cognitive Sciences</i> , 2013 , 17, 666-82	14	560
157	The WU-Minn Human Connectome Project: an overview. NeuroImage, 2013, 80, 62-79	7.9	2585

155	Utility of Partial Correlation for Characterising Brain Dynamics: MVPA-based Assessment of Regularisation and Network Selection 2013 ,		2
154	Preventing Alzheimer's disease-related gray matter atrophy by B-vitamin treatment. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 9523-8	11.5	329
153	What is the most interesting part of the brain?. <i>Trends in Cognitive Sciences</i> , 2013 , 17, 2-4	14	31
152	Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration. <i>NeuroImage</i> , 2013 , 76, 400-11	7.9	120
151	Evaluation of slice accelerations using multiband echo planar imaging at 3 T. <i>NeuroImage</i> , 2013 , 83, 991	- 1/ 0 <u>/</u> 01	306
150	Resting functional connectivity reveals residual functional activity in Alzheimer's disease. <i>Biological Psychiatry</i> , 2013 , 74, 375-83	7.9	51
149	Brain microstructure reveals early abnormalities more than two years prior to clinical progression from mild cognitive impairment to Alzheimer's disease. <i>Journal of Neuroscience</i> , 2013 , 33, 2147-55	6.6	131
148	Resting-state fMRI in the Human Connectome Project. <i>NeuroImage</i> , 2013 , 80, 144-68	7.9	865
147	Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project. <i>NeuroImage</i> , 2013 , 80, 80-104	7.9	534
146	Spatial vs. Temporal Features in ICA of Resting-State fMRI - A Quantitative and Qualitative Investigation in the Context of Response Inhibition. <i>PLoS ONE</i> , 2013 , 8, e66572	3.7	22
145	ICA model order selection of task co-activation networks. Frontiers in Neuroscience, 2013, 7, 237	5.1	95
144	Pairwise Likelihood Ratios for Estimation of Non-Gaussian Structural Equation Models. <i>Journal of Machine Learning Research</i> , 2013 , 14, 111-152	28.6	63
143	Multimodal surface matching: fast and generalisable cortical registration using discrete optimisation. <i>Lecture Notes in Computer Science</i> , 2013 , 23, 475-86	0.9	31
142	Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: a 7.0-T fMRI study. <i>Human Brain Mapping</i> , 2012 , 33, 511-22	5.9	18
141	Temporally-independent functional modes of spontaneous brain activity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 3131-6	11.5	555
140	An anatomically comprehensive atlas of the adult human brain transcriptome. <i>Nature</i> , 2012 , 489, 391-3	9 9 0.4	1525
139	FSL. <i>Neurolmage</i> , 2012 , 62, 782-90	7.9	5752
138	Task-driven ICA feature generation for accurate and interpretable prediction using fMRI. NeuroImage, 2012, 60, 189-203	7.9	26

137	The future of FMRI connectivity. <i>NeuroImage</i> , 2012 , 62, 1257-66	7.9	254
136	Benefits of multi-modal fusion analysis on a large-scale dataset: life-span patterns of inter-subject variability in cortical morphometry and white matter microstructure. <i>NeuroImage</i> , 2012 , 63, 365-80	7.9	96
135	Tools of the trade: psychophysiological interactions and functional connectivity. <i>Social Cognitive and Affective Neuroscience</i> , 2012 , 7, 604-9	4	529
134	Language networks in anophthalmia: maintained hierarchy of processing in 'visual' cortex. <i>Brain</i> , 2012 , 135, 1566-77	11.2	74
133	Resting-state FMRI single subject cortical parcellation based on region growing. <i>Lecture Notes in Computer Science</i> , 2012 , 15, 188-95	0.9	12
132	A Bayesian model of shape and appearance for subcortical brain segmentation. <i>NeuroImage</i> , 2011 , 56, 907-22	7.9	1531
131	Diffusion imaging of whole, post-mortem human brains on a clinical MRI scanner. <i>NeuroImage</i> , 2011 , 57, 167-181	7.9	193
130	Network modelling methods for FMRI. <i>NeuroImage</i> , 2011 , 54, 875-91	7.9	1254
129	Adjusting the effect of nonstationarity in cluster-based and TFCE inference. <i>NeuroImage</i> , 2011 , 54, 200)6 -/ 19	105
128	DTI measures in crossing-fibre areas: increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease. <i>NeuroImage</i> , 2011 , 55, 880-90	7.9	381
127	Spectral characteristics of resting state networks. <i>Progress in Brain Research</i> , 2011 , 193, 259-76	2.9	140
126	Using Gaussian-process regression for meta-analytic neuroimaging inference based on sparse observations. <i>IEEE Transactions on Medical Imaging</i> , 2011 , 30, 1401-16	11.7	18
125	Investigating the electrophysiological basis of resting state networks using magnetoencephalography. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 16783-8	11.5	647
124	Behavioral interpretations of intrinsic connectivity networks. <i>Journal of Cognitive Neuroscience</i> , 2011 , 23, 4022-37	3.1	769
123	Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. <i>PLoS ONE</i> , 2010 , 5, e15710	3.7	889
122	Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. <i>Frontiers in Systems Neuroscience</i> , 2010 , 4, 8	3.5	624
121	Resting state networks change in clinically isolated syndrome. <i>Brain</i> , 2010 , 133, 1612-21	11.2	194
120	Age-related changes in grey and white matter structure throughout adulthood. <i>NeuroImage</i> , 2010 , 51, 943-51	7.9	336

119	Crossing fibres in tract-based spatial statistics. <i>NeuroImage</i> , 2010 , 49, 249-56	7.9	145
118	Combining shape and connectivity analysis: an MRI study of thalamic degeneration in Alzheimer's disease. <i>Neurolmage</i> , 2010 , 49, 1-8	7.9	138
117	Relationships of brain white matter microstructure with clinical and MR measures in relapsing-remitting multiple sclerosis. <i>Journal of Magnetic Resonance Imaging</i> , 2010 , 31, 309-16	5.6	63
116	Asymmetries of the balanced SSFP profile. Part II: white matter. <i>Magnetic Resonance in Medicine</i> , 2010 , 63, 396-406	4.4	23
115	Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: a randomized controlled trial. <i>PLoS ONE</i> , 2010 , 5, e12244	3.7	472
114	Schizophrenia delays and alters maturation of the brain in adolescence. <i>Brain</i> , 2009 , 132, 2437-48	11.2	114
113	Model-free group analysis shows altered BOLD FMRI networks in dementia. <i>Human Brain Mapping</i> , 2009 , 30, 256-66	5.9	107
112	Investigation of white matter pathology in ALS and PLS using tract-based spatial statistics. <i>Human Brain Mapping</i> , 2009 , 30, 615-24	5.9	107
111	White matter tract integrity in aging and Alzheimer's disease. Human Brain Mapping, 2009, 30, 1051-9	5.9	194
110	Cross-subject Comparison of Local Diffusion MRI Parameters 2009 , 147-174		1
110	Cross-subject Comparison of Local Diffusion MRI Parameters 2009 , 147-174 Correspondence of the brain's functional architecture during activation and rest. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 13040-5	11.5	3661
	Correspondence of the brain's functional architecture during activation and rest. <i>Proceedings of the</i>	11.5	
109	Correspondence of the brain's functional architecture during activation and rest. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 13040-5 Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. <i>Proceedings of the</i>		3661
109	Correspondence of the brain's functional architecture during activation and rest. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 13040-5 Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 7209-14 Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence	11.5	3661 1286
109	Correspondence of the brain's functional architecture during activation and rest. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 13040-5 Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 7209-14 Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. <i>NeuroImage</i> , 2009 , 44, 83-98 Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of	7.9	3661 1286 3377
109 108 107	Correspondence of the brain's functional architecture during activation and rest. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 13040-5 Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 7209-14 Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. <i>NeuroImage</i> , 2009 , 44, 83-98 Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. <i>NeuroImage</i> , 2009 , 45, 810-23 An evaluation of four automatic methods of segmenting the subcortical structures in the brain.	7·9 7·9	3661 1286 3377 250
109 108 107 106	Correspondence of the brain's functional architecture during activation and rest. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 13040-5 Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 7209-14 Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. <i>NeuroImage</i> , 2009 , 44, 83-98 Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. <i>NeuroImage</i> , 2009 , 45, 810-23 An evaluation of four automatic methods of segmenting the subcortical structures in the brain. <i>NeuroImage</i> , 2009 , 47, 1435-47 Sampling and visualizing creases with scale-space particles. <i>IEEE Transactions on Visualization and</i>	7.9 7.9 7.9	3661 1286 3377 250 148

101	Methods for tractography-driven surface registration of brain structures. <i>Lecture Notes in Computer Science</i> , 2009 , 12, 705-12	0.9	4
100	Adjusting the neuroimaging statistical inferences for nonstationarity. <i>Lecture Notes in Computer Science</i> , 2009 , 12, 992-9	0.9	4
99	Enhanced brain extraction improves the accuracy of brain atrophy estimation. <i>NeuroImage</i> , 2008 , 40, 583-589	7.9	52
98	Bayesian deconvolution of [corrected] fMRI data using bilinear dynamical systems. <i>NeuroImage</i> , 2008 , 42, 1381-96	7.9	27
97	Evidence for abnormalities of cortical development in adolescent-onset schizophrenia. <i>NeuroImage</i> , 2008 , 43, 665-75	7.9	117
96	Brain atrophy assessment in multiple sclerosis: importance and limitations. <i>Neuroimaging Clinics of North America</i> , 2008 , 18, 675-86, xi	3	57
95	Structural and functional abnormalities of the motor system in developmental stuttering. <i>Brain</i> , 2008 , 131, 50-9	11.2	271
94	Comparison and evaluation of segmentation techniques for subcortical structures in brain MRI. <i>Lecture Notes in Computer Science</i> , 2008 , 11, 409-16	0.9	28
93	Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. <i>Brain</i> , 2007 , 130, 2375-86	11.2	605
92	Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. <i>Journal of Neuroscience</i> , 2007 , 27, 3743-52	6.6	738
91	Intercenter agreement of brain atrophy measurement in multiple sclerosis patients using manually-edited SIENA and SIENAX. <i>Journal of Magnetic Resonance Imaging</i> , 2007 , 26, 881-5	5.6	39
90	Acquisition and voxelwise analysis of multi-subject diffusion data with tract-based spatial statistics. <i>Nature Protocols</i> , 2007 , 2, 499-503	18.8	472
89	Measuring brain atrophy in multiple sclerosis. <i>Journal of Neuroimaging</i> , 2007 , 17 Suppl 1, 10S-15S	2.8	45
88	Manifestations of early brain recovery associated with abstinence from alcoholism. <i>Brain</i> , 2007 , 130, 36-47	11.2	146
87	Meaningful design and contrast estimability in FMRI. NeuroImage, 2007, 34, 127-36	7.9	50
86	Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills. <i>NeuroImage</i> , 2007 , 36 Suppl 2, T16-21	7.9	187
85	Longitudinal and cross-sectional analysis of atrophy in Alzheimer's disease: cross-validation of BSI, SIENA and SIENAX. <i>NeuroImage</i> , 2007 , 36, 1200-6	7.9	93
84	Signal and noise characteristics of SSFP FMRI: a comparison with GRE at multiple field strengths. NeuroImage, 2007, 37, 1227-36	7.9	38

(2004-2007)

83	Regional brain atrophy development is related to specific aspects of clinical dysfunction in multiple sclerosis. <i>NeuroImage</i> , 2007 , 38, 529-37	7.9	34
82	Independent Component Analysis of Functional Magnetic Resonance Imaging Data Using Wavelet Dictionaries 2007 , 625-632		1
81	Applying FSL to the FIAC data: model-based and model-free analysis of voice and sentence repetition priming. <i>Human Brain Mapping</i> , 2006 , 27, 380-91	5.9	51
80	High-resolution FMRI at 1.5T using balanced SSFP. Magnetic Resonance in Medicine, 2006 , 55, 161-70	4.4	61
79	Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. <i>NeuroImage</i> , 2006 , 31, 1487-505	7.9	4763
78	Functional anatomy of interhemispheric cortical connections in the human brain. <i>Journal of Anatomy</i> , 2006 , 209, 311-20	2.9	169
77	Lesion probability maps of white matter hyperintensities in elderly individuals: results of the Austrian stroke prevention study. <i>Journal of Neurology</i> , 2006 , 253, 1064-70	5.5	60
76	A Bayesian Cost Function Applied to Model-Based Registration of Sub-cortical Brain Structures. <i>Lecture Notes in Computer Science</i> , 2006 , 9-17	0.9	1
75	Investigations into resting-state connectivity using independent component analysis. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2005 , 360, 1001-13	5.8	2523
74	Mixture models with adaptive spatial regularization for segmentation with an application to FMRI data. <i>IEEE Transactions on Medical Imaging</i> , 2005 , 24, 1-11	11.7	99
73	Ventral striatum/nucleus accumbens activation to smoking-related pictorial cues in smokers and nonsmokers: a functional magnetic resonance imaging study. <i>Biological Psychiatry</i> , 2005 , 58, 488-94	7.9	226
72	Prioritizing new over old: an fMRI study of the preview search task. Human Brain Mapping, 2005, 24, 69-	7§ .9	24
71	Variability in fMRI: a re-examination of inter-session differences. Human Brain Mapping, 2005, 24, 248-5	7 5.9	140
70	White matter lesion progression, brain atrophy, and cognitive decline: the Austrian stroke prevention study. <i>Annals of Neurology</i> , 2005 , 58, 610-6	9.4	284
69	Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. <i>Experimental Brain Research</i> , 2005 , 167, 587-94	2.3	140
68	Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. <i>Cerebral Cortex</i> , 2005 , 15, 31-9	5.1	459
67	A comparison of the tissue classification and the segmentation propagation techniques in MRI brain image segmentation 2005 ,		2
66	Accelerated evolution of brain atrophy and "black holes" in MS patients with APOE-epsilon 4. <i>Annals of Neurology</i> , 2004 , 55, 563-9	9.4	100

65	Distinct portions of anterior cingulate cortex and medial prefrontal cortex are activated by reward processing in separable phases of decision-making cognition. <i>Biological Psychiatry</i> , 2004 , 55, 594-602	7.9	324
64	Fully Bayesian spatio-temporal modeling of FMRI data. <i>IEEE Transactions on Medical Imaging</i> , 2004 , 23, 213-31	11.7	181
63	Probabilistic independent component analysis for functional magnetic resonance imaging. <i>IEEE Transactions on Medical Imaging</i> , 2004 , 23, 137-52	11.7	1879
62	Multilevel linear modelling for FMRI group analysis using Bayesian inference. <i>NeuroImage</i> , 2004 , 21, 173	3 2/.4 7	1171
61	Constrained linear basis sets for HRF modelling using Variational Bayes. <i>NeuroImage</i> , 2004 , 21, 1748-61	7.9	192
60	Advances in functional and structural MR image analysis and implementation as FSL. <i>NeuroImage</i> , 2004 , 23 Suppl 1, S208-19	7.9	8876
59	Interferon beta-1a for brain tissue loss in patients at presentation with syndromes suggestive of multiple sclerosis: a randomised, double-blind, placebo-controlled trial. <i>Lancet, The</i> , 2004 , 364, 1489-96	40	215
58	A Framework for Detailed Objective Comparison of Non-rigid Registration Algorithms in Neuroimaging. <i>Lecture Notes in Computer Science</i> , 2004 , 679-686	0.9	19
57	Potentially adaptive functional changes in cognitive processing for patients with multiple sclerosis and their acute modulation by rivastigmine. <i>Brain</i> , 2003 , 126, 2750-60	11.2	141
56	On bias in the estimation of autocorrelations for fMRI voxel time-series analysis. <i>NeuroImage</i> , 2003 , 18, 83-90	7.9	28
55	General multilevel linear modeling for group analysis in FMRI. NeuroImage, 2003, 20, 1052-63	7.9	1127
54	Evidence for asymmetric frontal-lobe involvement in episodic memory from functional magnetic resonance imaging and patients with unilateral frontal-lobe excisions. <i>Neuropsychologia</i> , 2002 , 40, 2420	-37	11
53	Fast robust automated brain extraction. <i>Human Brain Mapping</i> , 2002 , 17, 143-55	5.9	7438
52	A method for determining venous contribution to BOLD contrast sensory activation. <i>Magnetic Resonance Imaging</i> , 2002 , 20, 695-706	3.3	28
51	Monitoring disease activity and progression in primary progressive multiple sclerosis using MRI: sub-voxel registration to identify lesion changes and to detect cerebral atrophy. <i>Journal of Neurology</i> , 2002 , 249, 171-7	5.5	22
50	Imaging how attention modulates pain in humans using functional MRI. <i>Brain</i> , 2002 , 125, 310-9	11.2	647
49	Diffuse axonal and tissue injury in patients with multiple sclerosis with low cerebral lesion load and no disability. <i>Archives of Neurology</i> , 2002 , 59, 1565-71		150
48	Cerebellar responses during anticipation of noxious stimuli in subjects recovered from depression. Functional magnetic resonance imaging study. <i>British Journal of Psychiatry</i> , 2002 , 181, 411-5	5.4	48

47	Imaging attentional modulation of pain in the periaqueductal gray in humans. <i>Journal of Neuroscience</i> , 2002 , 22, 2748-52	6.6	450
46	Correlation between motor improvements and altered fMRI activity after rehabilitative therapy. <i>Brain</i> , 2002 , 125, 2731-42	11.2	456
45	Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. <i>NeuroImage</i> , 2002 , 17, 479-89	7.9	1571
44	Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images. <i>NeuroImage</i> , 2002 , 17, 825-841	7.9	6869
43	Effects of word form on brain processing of written Chinese. <i>NeuroImage</i> , 2002 , 17, 1538-48	7.9	97
42	Improved optimization for the robust and accurate linear registration and motion correction of brain images. <i>NeuroImage</i> , 2002 , 17, 825-41	7.9	4786
41	Normalized accurate measurement of longitudinal brain change. <i>Journal of Computer Assisted Tomography</i> , 2001 , 25, 466-75	2.2	377
40	A global optimisation method for robust affine registration of brain images. <i>Medical Image Analysis</i> , 2001 , 5, 143-56	15.4	4744
39	Investigating the intrinsic dimensionality of FMRI data for ICA. NeuroImage, 2001, 13, 76	7.9	21
38	Temporal autocorrelation in univariate linear modeling of FMRI data. <i>NeuroImage</i> , 2001 , 14, 1370-86	7.9	1941
37	Overview of fMRI analysis 2001 , 216-230		2
36	Preparing fMRI data for statistical analysis 2001 , 231-243		5
35	Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. <i>Annals of Neurology</i> , 2000 , 47, 391-395	9.4	364
34	Accurate Robust Symmetry Estimation. <i>Lecture Notes in Computer Science</i> , 1999 , 308-317	0.9	17
		0.9	
33	SUSANA New Approach to Low Level Image Processing 1997 , 23, 45-78		1811
33		0.9	1811
	SUSANA New Approach to Low Level Image Processing 1997 , 23, 45-78 Using GPUs to accelerate computational diffusion MRI: From microstructure estimation to	0.9	

29	Using Temporal ICA to Selectively Remove Global Noise While Preserving Global Signal in Functional MRI Data	9
28	Accurate brain age prediction with lightweight deep neural networks	8
27	The Developing Human Connectome Project: typical and disrupted perinatal functional connectivity	8
26	Phenotype Discovery from Population Brain Imaging	2
25	Confound modelling in UK Biobank brain imaging	4
24	Mid-life and late life activities and their relationship with MRI measures of brain structure and functional connectivity in the UK Biobank cohort	1
23	Enhanced Brain Imaging Genetics in UK Biobank	7
22	Common variants contribute to intrinsic human brain functional networks	2
21	Combining Multi-Site/Multi-Study MRI Data: Linked-ICA Denoising for Removing Scanner and Site Variability from Multimodal MRI Data	1
20	Effective Degrees of Freedom of the Pearson Correlation Coefficient under Autocorrelation	3
19	Modelling Subject Variability in the Spatial and Temporal Characteristics of Functional Modes	3
18	Estimation of Brain Age Delta from Brain Imaging	6
17	Hippocampal volume across age: Nomograms derived from over 19,700 people in UK Biobank	1
16	Towards HCP-Style Macaque Connectomes: 24-Channel 3T Multi-Array Coil, MRI Sequences and Preproc	cessing ₂
15	High resolution nonlinear registration with simultaneous modelling of intensities	3
14	A data-driven approach to optimising the encoding for multi-shell diffusion MRI with application to neonatal imaging	1
13	Optimising network modelling methods for fMRI	2
12	The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants	5

LIST OF PUBLICATIONS

11	biophysical associations	3
10	Patterns of socio-cognitive stratification and perinatal risk in the child brain	1
9	Disambiguating brain functional connectivity	2
8	Multimodal Surface Matching with Higher-Order Smoothness Constraints?	1
7	Multi-dynamic Modelling Reveals Strongly Time-varying Resting fMRI Correlations	1
6	Phenotypic and genetic associations of quantitative magnetic susceptibility in UK Biobank brain imaging	1
5	The Forget-Me-Not dHCP study: 7 Tesla high resolution diffusion imaging in the unfixed post-mortem neonatal brain	2
4	Hierarchical modelling of functional brain networks in population and individuals from big fMRI data	1
3	Accurate predictions of individual differences in task-evoked brain activity from resting-state fMRI using a sparse ensemble learner	1
2	Supervised Phenotype Discovery fromMultimodal Brain Imaging	1
1	Graded Variation In Cortical T1w/T2w Myelination During Adolescence	1