Ioannis N Lykakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1516593/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective Mild Oxidation of Anilines into Nitroarenes by Catalytic Activation of Mesoporous Frameworks Linked with Gold‣oaded Mn ₃ O ₄ Nanoparticles. ChemPlusChem, 2022, 87, .	1.3	3
2	Polyoxometalate-Driven Ease Conversion of Valuable Furfural to <i>trans</i> - <i>N</i> , <i>N</i> -4,5-Diaminocyclopenten-2-ones. Journal of Organic Chemistry, 2022, 87, 2601-2615.	1.7	8
3	Metal-Catalysed A3 Coupling Methodologies: Classification and Visualisation. Catalysts, 2022, 12, 660.	1.6	13
4	Mo2C as Pre-Catalyst for the C-H Allylic Oxygenation of Alkenes and Terpenoids in the Presence of H2O2. Organics, 2022, 3, 173-186.	0.6	0
5	Supported Gold Nanoparticle-Catalyzed Selective Reduction of Multifunctional, Aromatic Nitro Precursors into Amines and Synthesis of 3,4-Dihydroquinoxalin-2-Ones. Molecules, 2022, 27, 4395.	1.7	2
6	Selective Reduction of Nitroarenes to Arylamines by the Cooperative Action of Methylhydrazine and a Tris(<i>N</i> -heterocyclic thioamidate) Cobalt(III) Complex. Journal of Organic Chemistry, 2021, 86, 2895-2906.	1.7	12
7	Skeletally Tunable Seven-Membered-Ring Fused Pyrroles. Organic Letters, 2021, 23, 6685-6690.	2.4	12
8	Selective C–H Allylic Oxygenation of Cycloalkenes and Terpenoids Photosensitized by [Cu(Xantphos)(neoc)]BF4. Journal of Organic Chemistry, 2021, 86, 13503-13513.	1.7	4
9	Direct and Indirect Chemiluminescence: Reactions, Mechanisms and Challenges. Molecules, 2021, 26, 7664.	1.7	27
10	Selective Synthesis of Benzimidazoles from o-Phenylenediamine and Aldehydes Promoted by Supported Gold Nanoparticles. Nanomaterials, 2020, 10, 2405.	1.9	36
11	Selective Photoinduced Reduction of Nitroarenes to <i>N</i> -Arylhydroxylamines. Organic Letters, 2020, 22, 4339-4343.	2.4	18
12	Nanogold(0)-Catalyzed Addition of Heteroelement σ Linkages to Functional Groups. Synthesis, 2019, 51, 2435-2454.	1.2	23
13	Copper-Promoted Regioselective Synthesis of Polysubstituted Pyrroles from Aldehydes, Amines, and Nitroalkenes via 1,2-Phenyl/Alkyl Migration. Journal of Organic Chemistry, 2018, 83, 2104-2113.	1.7	40
14	Mechanistic Studies on the Michael Addition of Amines and Hydrazines To Nitrostyrenes: Nitroalkane Elimination via a Retro-aza-Henry-Type Process. Journal of Organic Chemistry, 2018, 83, 1176-1184.	1.7	28
15	Copper(<scp>ii</scp>)-benzotriazole coordination compounds in click chemistry: a diagnostic reactivity study. Dalton Transactions, 2018, 47, 10491-10508.	1.6	16
16	Application of Silver Nanoparticles in the Multicomponent Reaction Domain: A Combined Catalytic Reduction Methodology to Efficiently Access Potential Hypertension or Inflammation Inhibitors. ACS Omega, 2018, 3, 16005-16013.	1.6	17
17	Alumina-Supported Gold Nanoparticles as a Bifunctional Catalyst for the Synthesis of 2-Amino-3-arylimidazo[1,2- <i>a</i>)pyridines. ACS Omega, 2018, 3, 17947-17956.	1.6	17
18	Structural Diversity and Catalytic Properties in a Family of Ag(I)-Benzotriazole Based Coordination Compounds. Crystal Growth and Design, 2018, 18, 5638-5651.	1.4	23

#	Article	IF	CITATIONS
19	Cu(II) Coordination Polymers as Vehicles in the A ³ Coupling. Inorganic Chemistry, 2017, 56, 4898-4910.	1.9	49
20	Gold nanoparticles, radiations and the immune system: Current insights into the physical mechanisms and the biological interactions of this new alliance towards cancer therapy. , 2017, 178, 1-17.		59
21	A Copperâ€Benzotriazoleâ€Based Coordination Polymer Catalyzes the Efficient Oneâ€Pot Synthesis of (<i>N′</i> â€Substituted)â€hydrazoâ€4â€arylâ€1,4â€dihydropyridines from Azines. Advanced Synthesis and 2017, 359, 138-145.	Catzalysis,	37
22	Selective Reduction of Azines to Benzyl Hydrazones with Sodium Borohydride Catalyzed by Mesoporous Silica‧upported Silver Nanoparticles: A Catalytic Route towards Pyrazole Synthesis. Advanced Synthesis and Catalysis, 2017, 359, 2949-2960.	2.1	28
23	Photocatalytic Aerobic Oxidation of Alkenes into Epoxides or Chlorohydrins Promoted by a Polymerâ€6upported Decatungstate Catalyst. ChemPhotoChem, 2017, 1, 479-484.	1.5	19
24	Mesoporous Assembled Mn ₃ O ₄ Nanoparticle Networks as Efficient Catalysts for Selective Oxidation of Alkenes and Aryl Alkanes. ChemPlusChem, 2017, 82, 136-143.	1.3	17
25	Reduction of Nitroarenes into Aryl Amines and N-Aryl hydroxylamines via Activation of NaBH4 and Ammonia-Borane Complexes by Ag/TiO2 Catalyst. Nanomaterials, 2016, 6, 54.	1.9	38
26	Controllable Synthesis of Mesoporous Iron Oxide Nanoparticle Assemblies for Chemoselective Catalytic Reduction of Nitroarenes. Chemistry - A European Journal, 2016, 22, 4600-4607.	1.7	60
27	Titania‣upported Gold Nanoparticles Catalyze the Selective Oxidation of Amines into Nitroso Compounds in the Presence of Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2016, 358, 1500-1508.	2.1	30
28	Mesoporous CdS-sensitized TiO2 nanoparticle assemblies with enhanced photocatalytic properties: Selective aerobic oxidation of benzyl alcohols. Catalysis Today, 2015, 250, 180-186.	2.2	43
29	Green photocatalytic organic transformations by polyoxometalates vs. mesoporous TiO2 nanoparticles: selective aerobic oxidation of alcohols. Photochemical and Photobiological Sciences, 2015, 14, 563-568.	1.6	25
30	Biomimetic chemistry on the protection of cis phospholipid from the thiyl radical isomerization by common antioxidants. Arkivoc, 2015, 2015, 140-153.	0.3	8
31	Mesoporous Au–TiO2 Nanoparticle Assemblies as Efficient Catalysts for the Chemoselective Reduction of Nitro Compounds. Materials Research Society Symposia Proceedings, 2014, 1641, 1.	0.1	0
32	Mesoporous Au-loaded Fe2O3 Nanoparticle Assemblies for Chemoselective Reduction of Nitroarenes. Materials Research Society Symposia Proceedings, 2014, 1749, 1.	0.1	0
33	Efficient hydrosilylation of carbonyl compounds by 1,1,3,3-tetramethyldisiloxane catalyzed by Au/TiO2. Tetrahedron, 2014, 70, 6106-6113.	1.0	20
34	Efficient visible-light photocatalytic activity by band alignment in mesoporous ternary polyoxometalate–Ag ₂ S–CdS semiconductors. Nanoscale, 2014, 6, 8694.	2.8	49
35	Heteropolytungstic acids incorporated in an ordered mesoporous zirconia framework as efficient oxidation catalysts. RSC Advances, 2014, 4, 8402-8409.	1.7	16
36	Ordered mesoporous V ₂ O ₅ /WO ₃ composite catalysts for efficient oxidation of aryl alcohols. RSC Advances, 2014, 4, 46170-46178.	1.7	16

#	Article	IF	CITATIONS
37	Mechanistic Studies of the Reduction of Nitroarenes by NaBH ₄ or Hydrosilanes Catalyzed by Supported Gold Nanoparticles. ACS Catalysis, 2014, 4, 3504-3511.	5.5	257
38	Biomimetic Thiyl Radical Chemistry by γâ€Irradiation of Micelles and Vesicles Containing Unsaturated Fatty Acids. Israel Journal of Chemistry, 2014, 54, 242-247.	1.0	10
39	Mesoporous Au–TiO2 nanoparticle assemblies as efficient catalysts for the chemoselective reduction of nitro compounds. Journal of Materials Chemistry A, 2013, 1, 14311.	5.2	52
40	Gold-Catalyzed Dehydrogenative Cycloaddition of Tethered 1,n-Dihydrodisilanes to Alkynes. Organometallics, 2013, 32, 665-672.	1.1	24
41	Catalytic activation of hydrazine hydrate by gold nanoparticles: Chemoselective reduction of nitro compounds into amines. Catalysis Communications, 2013, 36, 48-51.	1.6	99
42	Facile Reduction of Nitroarenes into Anilines and Nitroalkanes into Hydroxylamines <i>via</i> the Rapid Activation of Ammoniaâ< Borane Complex by Supported Gold Nanoparticles. Advanced Synthesis and Catalysis, 2013, 355, 907-911.	2.1	68
43	Synthesis of quinolines and fused pyridocoumarins from N-propargylanilines or propargylaminocoumarins by catalysis with gold nanoparticles supported on TiO2. Tetrahedron, 2013, 69, 4612-4616.	1.0	46
44	Photo-catalysis and Polyoxo-anion Decatungstate in Organic Chemistry: A Manifold Concept for Green Chemistry. Current Organic Chemistry, 2012, 16, 2400-2414.	0.9	31
45	Reaction of hydrosilanes with alkynes catalyzed by gold nanoparticles supported on TiO2. Tetrahedron, 2012, 68, 8724-8731.	1.0	41
46	Ordered mesoporous Cr2O3 frameworks incorporating Keggin-type 12-phosphotungstic acids as efficient catalysts for oxidation of benzyl alcohols. Journal of Materials Chemistry, 2012, 22, 6919.	6.7	26
47	Cyclization of 1,6-Enynes Catalyzed by Gold Nanoparticles Supported on TiO ₂ : Significant Changes in Selectivity and Mechanism, as Compared to Homogeneous Au-Catalysis. Organic Letters, 2012, 14, 2956-2959.	2.4	64
48	Synthesis and Photocatalytic Properties of High-Surface-Area Mesoporous TiO2Nanoparticle Assemblies. Materials Research Society Symposia Proceedings, 2012, 1494, 315-320.	0.1	0
49	One-pot synthesis of highly crystalline mesoporous TiO2 nanoparticle assemblies with enhanced photocatalytic activity. Chemical Communications, 2012, 48, 6687.	2.2	40
50	Oxidative Cycloaddition of 1,1,3,3-Tetramethyldisiloxane to Alkynes Catalyzed by Supported Gold Nanoparticles. Journal of the American Chemical Society, 2011, 133, 10426-10429.	6.6	58
51	Mesoporous Cr ₂ O ₃ –Phosphomolybdic Acid Solid Solution Frameworks with High Catalytic Activity. Chemistry of Materials, 2011, 23, 4204-4211.	3.2	33
52	Functionalized 3(2H)-furanones via photooxygenation of (β-keto)-2-substituted furans: Application to the biomimetic synthesis of merrekentrone C. Organic and Biomolecular Chemistry, 2011, 9, 5655.	1.5	26
53	Gold nanoparticles supported on TiO ₂ catalyse the cycloisomerisation/oxidative dimerisation of aryl propargyl ethers. Chemical Communications, 2011, 47, 803-805.	2.2	85
54	Ph ₃ PAuNTf ₂ as a Superior Catalyst for the Selective Synthesis of 2 <i>H</i> â€Chromenes: Application to the Concise Synthesis of Benzopyran Natural Products. European Journal of Organic Chemistry, 2011, 2011, 2334-2338.	1.2	94

#	Article	IF	CITATIONS
55	Streamlining Organic Free Radical Synthesis through Modern Molecular Technology: from Polymer Supported Synthesis to Microreactors and Beyond. Current Organic Synthesis, 2010, 7, 177-188.	0.7	28
56	Thiols as an Efficient Hydrogen Atom Donor in Free Radical Transformations in Aqueous Media. Current Organic Chemistry, 2010, 14, 1075-1082.	0.9	3
57	Separation of cis/trans geometrical fatty acid isomers by silver-exchanged zeolite Y. Tetrahedron, 2010, 66, 2203-2209.	1.0	7
58	Radical Reactions in Aqueous Media: Origins, Reason and Applications. Current Organic Chemistry, 2009, 13, 573-598.	0.9	19
59	Acid atalyzed Cyclization of Terpenes Under Homogeneous and Heterogeneous Conditions as Probed Through Stereoisotopic Studies: A Concerted Process with Competing Preorganized Chair and Boat Transition States. Chemistry - A European Journal, 2009, 15, 11918-11927.	1.7	15
60	Divergent Synthesis of the Co-isolated Mycotoxins Longianone, Isopatulin, and (Z)-Ascladiol via Furan Oxidation. Journal of Organic Chemistry, 2009, 74, 6339-6342.	1.7	30
61	Biomimetic Synthesis of Dimeric Metabolite Acremine G via a Highly Regioselective and Stereoselective Dielsâ~'Alder Reaction. Organic Letters, 2009, 11, 2988-2991.	2.4	22
62	Decatungstate as an efficient photocatalyst in organic chemistry. Chemical Society Reviews, 2009, 38, 2609.	18.7	286
63	Decatungstate-Catalyzed Photooxygenation of S-2-Phenylbutane and Cumene via a Free Carbon-Radical Intermediate. Current Organic Chemistry, 2009, 13, 1737-1745.	0.9	7
64	Synthesis of all-trans anandamide: A substrate for fatty acid amide hydrolase with dual effects on rabbit platelet activation. Bioorganic and Medicinal Chemistry, 2008, 16, 8359-8365.	1.4	9
65	Recent advances in C–H bond formation in aqueous media: a mechanistic perspective. Green Chemistry, 2008, 10, 153-163.	4.6	23
66	Zeolite NaY-Promoted Cyclization of Farnesal:  A Short Route to Nanaimoal. Journal of Organic Chemistry, 2008, 73, 2905-2908.	1.7	6
67	Recent Advances in Free Radical Chemistry of C-C Bond Formation in Aqueous Media: From Mechanistic Origins to Applications. Mini-Reviews in Organic Chemistry, 2008, 5, 19-32.	0.6	9
68	Zeolite NaY-Promoted Tandem 1,5-Diene-Carbonyl-Ene Dicyclization of α-Geranyl-Substituted Carbonyl Compounds. Synlett, 2008, 2008, 1635-1638.	1.0	1
69	The Sulfhydryl Radical (HS./S.â^'): A Contender for the Isomerization of Double Bonds in Membrane Lipids. Angewandte Chemie - International Edition, 2007, 46, 1914-1916.	7.2	47
70	Mechanism of decatungstate photocatalyzed oxygenation of aromatic alcoholsPart II. Kinetic isotope effects studies. Journal of Molecular Catalysis A, 2007, 262, 176-184.	4.8	37
71	Mechanism of decatungstate photocatalyzed oxygenation of aromatic alcoholsPart I. Continuous photolysis and laser flash photolysis studies. Journal of Molecular Catalysis A, 2007, 262, 170-175.	4.8	21
72	Decatungstate catalyst supported on silica and γ-alumina: Efficient photocatalytic oxidation of benzyl alcohols. Journal of Catalysis, 2007, 252, 178-189.	3.1	40

#	Article	IF	CITATIONS
73	Reaction of an Aza[60]fullerene Radical with Diphenylmethanes and Fluorenes:  A Mechanistic Approach. Journal of Organic Chemistry, 2006, 71, 829-832.	1.7	9
74	Homogeneous Decatungstate-Catalyzed Photooxygenation of Tetrasubstituted Alkenes:Â A Deuterium Kinetic Isotope Effect Study. Journal of Organic Chemistry, 2006, 71, 8740-8747.	1.7	21
75	trans-Fatty acids and radical stress: What are the real culprits?. Bioorganic and Medicinal Chemistry, 2006, 14, 6144-6148.	1.4	37
76	Deuterium kinetic isotope effects in homogeneous decatungstate catalyzed photooxygenation of 1,1-diphenylethane and 9-methyl-9H-fluorene: evidence for a hydrogen abstraction mechanism. Tetrahedron Letters, 2005, 46, 7835-7839.	0.7	23
77	LoneSelectivity of the Decatungstate-Sensitized Photooxidation of 1-Substituted Cycloalkenes. Synlett, 2004, 2004, 2131-2134.	1.0	2
78	Photooxidation of aryl alkanes by a decatungstate/triethylsilane system in the presence of molecular oxygen. Tetrahedron Letters, 2004, 45, 7645-7649.	0.7	34
79	9,10-Dicyanoanthracene photosensitized oxidation of aryl alkanols: evidence for an electron transfer mechanism. Tetrahedron Letters, 2003, 44, 6247-6251.	0.7	15
80	Decatungstate Photocatalyzed Oxidation of Aryl Alkanols. Electron Transfer or Hydrogen Abstraction Mechanism?. Organic Letters, 2003, 5, 2875-2878.	2.4	40
81	Ene Reaction of Singlet Oxygen, Triazolinedione, and Nitrosoarene with Chiral Deuterium-Labeled Allylic Alcohols:Â The Interdependence of Diastereoselectivity and Regioselectivity Discloses Mechanistic Insights into the Hydroxy-Group Directivity. Journal of the American Chemical Society, 2002–124–14403-14409	6.6	25