Jiu-Lin Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1516349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lithium metal anodes for rechargeable batteries. Energy and Environmental Science, 2014, 7, 513-537.	15.6	3,665
2	Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries. Energy and Environmental Science, 2012, 5, 6966.	15.6	455
3	Novel Threeâ€Dimensional Mesoporous Silicon for High Power Lithiumâ€Ion Battery Anode Material. Advanced Energy Materials, 2011, 1, 1036-1039.	10.2	374
4	Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte. Angewandte Chemie - International Edition, 2019, 58, 2760-2764.	7.2	369
5	Highly Crystallized Na ₂ CoFe(CN) ₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 5393-5399.	4.0	334
6	Silicon Microparticle Anodes with Self-Healing Multiple Network Binder. Joule, 2018, 2, 950-961.	11.7	316
7	Novel dual-salts electrolyte solution for dendrite-free lithium-metal based rechargeable batteries with high cycle reversibility. Journal of Power Sources, 2014, 271, 291-297.	4.0	307
8	Sulfurâ€Based Composite Cathode Materials for Highâ€Energy Rechargeable Lithium Batteries. Advanced Materials, 2015, 27, 569-575.	11.1	293
9	A Highly Reversible Zn Anode with Intrinsically Safe Organic Electrolyte for Long ycleâ€Life Batteries. Advanced Materials, 2019, 31, e1900668.	11.1	259
10	Carbonylâ€ <i>β</i> yclodextrin as a Novel Binder for Sulfur Composite Cathodes in Rechargeable Lithium Batteries. Advanced Functional Materials, 2013, 23, 1194-1201.	7.8	240
11	Room temperature Na/S batteries with sulfur composite cathode materials. Electrochemistry Communications, 2007, 9, 31-34.	2.3	195
12	Recent progress and perspective on lithium metal anode protection. Energy Storage Materials, 2018, 14, 199-221.	9.5	195
13	A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries. Journal of Materials Chemistry, 2011, 21, 6807.	6.7	193
14	Towards a Safe Lithium–Sulfur Battery with a Flameâ€Inhibiting Electrolyte and a Sulfurâ€Based Composite Cathode. Angewandte Chemie - International Edition, 2014, 53, 10099-10104.	7.2	178
15	CNT enhanced sulfur composite cathode material for high rate lithium battery. Electrochemistry Communications, 2011, 13, 399-402.	2.3	165
16	A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries. Scientific Reports, 2016, 6, 21771.	1.6	158
17	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€5ulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 791-795.	7.2	152
18	Microporous carbon coated silicon core/shell nanocomposite via in situ polymerization for advanced Li-ion battery anode material. Physical Chemistry Chemical Physics, 2009, 11, 11101.	1.3	130

#	Article	IF	CITATIONS
19	Polymer lithium cells with sulfur composites as cathode materials. Electrochimica Acta, 2003, 48, 1861-1867.	2.6	129
20	Enhanced Performance of a Lithium–Sulfur Battery Using a Carbonateâ€Based Electrolyte. Angewandte Chemie - International Edition, 2016, 55, 10372-10375.	7.2	124
21	A novel rechargeable battery with a magnesium anode, a titanium dioxide cathode, and a magnesium borohydride/tetraglyme electrolyte. Chemical Communications, 2015, 51, 2641-2644.	2.2	113
22	Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries. Angewandte Chemie - International Edition, 2020, 59, 7306-7318.	7.2	113
23	Stable Na Metal Anode Enabled by a Reinforced Multistructural SEI Layer. Advanced Functional Materials, 2019, 29, 1901924.	7.8	107
24	Polydopamine Wrapping Silicon Cross-linked with Polyacrylic Acid as High-Performance Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 2899-2904.	4.0	106
25	Electrolytes for advanced lithium ion batteries using silicon-based anodes. Journal of Materials Chemistry A, 2019, 7, 9432-9446.	5.2	101
26	Gravimetric and volumetric energy densities of lithium-sulfur batteries. Current Opinion in Electrochemistry, 2017, 6, 92-99.	2.5	100
27	Polyimide Encapsulated Lithium-Rich Cathode Material for High Voltage Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2014, 6, 17965-17973.	4.0	98
28	A high performance lithium–selenium battery using a microporous carbon confined selenium cathode and a compatible electrolyte. Journal of Materials Chemistry A, 2017, 5, 9350-9357.	5.2	94
29	Lithium sulfur batteries with compatible electrolyte both for stable cathode and dendrite-free anode. Energy Storage Materials, 2018, 15, 299-307.	9.5	92
30	Additive-containing ionic liquid electrolytes for secondary lithium battery. Journal of Power Sources, 2006, 160, 621-626.	4.0	91
31	Natural karaya gum as an excellent binder for silicon-based anodes in high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 1919-1924.	5.2	90
32	Addressing thermodynamic Instability of Zn anode: classical and recent advancements. Energy Storage Materials, 2022, 44, 206-230.	9.5	88
33	Morphology regulation and carbon coating of LiMnPO4 cathode material for enhanced electrochemical performance. Journal of Power Sources, 2011, 196, 10258-10262.	4.0	87
34	Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery. Energy Storage Materials, 2019, 18, 222-228.	9.5	84
35	Electrochemical Intercalation of Mg ²⁺ in Magnesium Manganese Silicate and Its Application as High-Energy Rechargeable Magnesium Battery Cathode. Journal of Physical Chemistry C, 2009, 113, 12594-12597.	1.5	82
36	Hierarchical Sulfurâ€Based Cathode Materials with Long Cycle Life for Rechargeable Lithium Batteries. ChemSusChem, 2014, 7, 563-569.	3.6	82

#	Article	IF	CITATIONS
37	Nano/micro-structured Si/CNT/C composite from nano-SiO ₂ for high power lithium ion batteries. Nanoscale, 2014, 6, 12532-12539.	2.8	81
38	A High-Performance Rechargeable Mg ²⁺ /Li ⁺ Hybrid Battery Using One-Dimensional Mesoporous TiO ₂ (B) Nanoflakes as the Cathode. ACS Applied Materials & Interfaces, 2016, 8, 7111-7117.	4.0	81
39	Stable Lithium Metal Anode Enabled by a Lithiophilic and Electron/Ion Conductive Framework. ACS Nano, 2020, 14, 5618-5627.	7.3	81
40	Towards practical Li–S battery with dense and flexible electrode containing lean electrolyte. Energy Storage Materials, 2020, 27, 307-315.	9.5	80
41	Charge/discharge characteristics of sulfur composite cathode materials in rechargeable lithium batteries. Electrochimica Acta, 2007, 52, 7372-7376.	2.6	77
42	Artificial Interface Deriving from Sacrificial Tris(trimethylsilyl)phosphate Additive for Lithium Rich Cathode Materials. Electrochimica Acta, 2014, 117, 99-104.	2.6	74
43	Confining small sulfur molecules in peanut shell-derived microporous graphitic carbon for advanced lithium sulfur battery. Electrochimica Acta, 2018, 273, 127-135.	2.6	74
44	Designing an intrinsically safe organic electrolyte for rechargeable batteries. Energy Storage Materials, 2020, 31, 382-400.	9.5	74
45	Safer lithium–sulfur battery based on nonflammable electrolyte with sulfur composite cathode. Chemical Communications, 2018, 54, 4132-4135.	2.2	68
46	Guar gum as a novel binder for sulfur composite cathodes in rechargeable lithium batteries. Chemical Communications, 2016, 52, 13479-13482.	2.2	66
47	High Active Magnesium Trifluoromethanesulfonate-Based Electrolytes for Magnesium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 9062-9072.	4.0	65
48	Electrochemical characteristics of sulfur composite cathode materials in rechargeable lithium batteries. Journal of Power Sources, 2004, 138, 271-273.	4.0	60
49	Surface Modification of Li _{1.2} Ni _{0.13} Mn _{0.54} Co _{0.13} O ₂ by Hydrazine Vapor as Cathode Material for Lithium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2015, 7, 15821-15829.	4.0	57
50	A solvothermal strategy: one-step in situ synthesis of self-assembled 3D graphene-based composites with enhanced lithium storage capacity. Journal of Materials Chemistry A, 2014, 2, 9200-9207.	5.2	56
51	Facile approach to SiOx/Si/C composite anode material from bulk SiO for lithium ion batteries. Physical Chemistry Chemical Physics, 2013, 15, 14420.	1.3	55
52	Application of a Sulfur Cathode in Nucleophilic Electrolytes for Magnesium/Sulfur Batteries. Journal of the Electrochemical Society, 2017, 164, A2504-A2512.	1.3	55
53	An Efficient Bulky Mg[B(Otfe) ₄] ₂ Electrolyte and Its Derivatively General Design Strategy for Rechargeable Magnesium Batteries. ACS Energy Letters, 2021, 6, 3212-3220.	8.8	55
54	Highly Reversible and Rechargeable Safe Zn Batteries Based on a Triethyl Phosphate Electrolyte. Angewandte Chemie, 2019, 131, 2786-2790.	1.6	54

#	Article	IF	CITATIONS
55	Sulfur@microporous Carbon Cathode with a High Sulfur Content for Magnesium–Sulfur Batteries with Nucleophilic Electrolytes. Journal of Physical Chemistry C, 2018, 122, 26764-26776.	1.5	53
56	MgFeSiO4 prepared via a molten salt method as a new cathode material for rechargeable magnesium batteries. Science Bulletin, 2011, 56, 386-390.	1.7	52
57	TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes. Chemical Communications, 2014, 50, 7011-7013.	2.2	52
58	Electrochemical intercalation of Mg2+ in 3D hierarchically porous magnesium cobalt silicate and its application as an advanced cathode material in rechargeable magnesium batteries. Journal of Materials Chemistry, 2011, 21, 12437.	6.7	51
59	Nonflammable electrolyte for rechargeable lithium battery with sulfur based composite cathode materials. Journal of Power Sources, 2013, 223, 18-22.	4.0	51
60	High concentration magnesium borohydride/tetraglyme electrolyte for rechargeable magnesium batteries. Journal of Power Sources, 2015, 276, 255-261.	4.0	50
61	Effect of Mg ²⁺ /Li ⁺ mixed electrolytes on a rechargeable hybrid battery with Li ₄ Ti ₅ O ₁₂ cathode and Mg anode. RSC Advances, 2016, 6, 3231-3234.	1.7	50
62	Dual-mode sulfur-based cathode materials for rechargeable Li–S batteries. Chemical Communications, 2012, 48, 7868.	2.2	49
63	Uniform Carbon Coating on Silicon Nanoparticles by Dynamic CVD Process for Electrochemical Lithium Storage. Industrial & Engineering Chemistry Research, 2014, 53, 12697-12704.	1.8	49
64	Effects of binders on the electrochemical performance of rechargeable magnesium batteries. Journal of Power Sources, 2017, 341, 219-229.	4.0	46
65	A new ether-based electrolyte for lithium sulfur batteries using a S@pPAN cathode. Chemical Communications, 2018, 54, 5478-5481.	2.2	44
66	Metal Organic Framework (MOF)-Derived carbon-encapsulated cuprous sulfide cathode based on displacement reaction for Hybrid Mg2+/Li+ batteries. Journal of Power Sources, 2020, 445, 227325.	4.0	44
67	A stable organic–inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries. Journal of Power Sources, 2017, 366, 265-269.	4.0	42
68	Inherently flame-retardant solid polymer electrolyte for safety-enhanced lithium metal battery. Chemical Engineering Journal, 2021, 410, 128415.	6.6	42
69	Polymer electrolytes for rechargeable lithium metal batteries. Sustainable Energy and Fuels, 2020, 4, 5469-5487.	2.5	41
70	A novel graphene sheet-wrapped Co ₂ (OH) ₃ Cl composite as a long-life anode material for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 16925-16930.	5.2	39
71	Hybrid Mg2+/Li+ batteries with Cu2Se cathode based on displacement reaction. Electrochimica Acta, 2018, 261, 503-512.	2.6	39
72	Boosting electrochemical kinetics of S cathodes for room temperature Na/S batteries. Matter, 2021, 4, 1768-1800.	5.0	39

#	Article	IF	CITATIONS
73	Highly Reversible Lithium-Metal Anode and Lithium–Sulfur Batteries Enabled by an Intrinsic Safe Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 33419-33427.	4.0	38
74	Coâ^'Ni Binaryâ€Metal Oxide Coated with Porous Carbon Derived from Metalâ€Organic Framework as Host of Nanoâ€Sulfur for Lithiumâ€Sulfur Batteries. Batteries and Supercaps, 2020, 3, 108-116.	2.4	38
75	A compatible carbonate electrolyte with lithium anode for high performance lithium sulfur battery. Electrochimica Acta, 2018, 282, 555-562.	2.6	37
76	Facile approach to an advanced nanoporous silicon/carbon composite anode material for lithium ion batteries. RSC Advances, 2012, 2, 5701.	1.7	36
77	A high performance lithium-ion–sulfur battery with a free-standing carbon matrix supported Li-rich alloy anode. Chemical Science, 2018, 9, 8829-8835.	3.7	36
78	A conductive selenized polyacrylonitrile cathode in nucleophilic Mg ²⁺ /Li ⁺ hybrid electrolytes for magnesium–selenium batteries. Journal of Materials Chemistry A, 2018, 6, 17075-17085.	5.2	35
79	Low-cost SiO-based anode using green binders for lithium ion batteries. Journal of Solid State Electrochemistry, 2013, 17, 2461-2469.	1.2	34
80	Magnesium Borohydride-Based Electrolytes Containing 1-butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide Ionic Liquid for Rechargeable Magnesium Batteries. Journal of the Electrochemical Society, 2016, 163, D682-D688.	1.3	34
81	High Molecular Weight Polyacrylonitrile Precursor for S@pPAN Composite Cathode Materials with High Specific Capacity for Rechargeable Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 33702-33709.	4.0	34
82	Duplex component additive of tris(trimethylsilyl) phosphite-vinylene carbonate for lithium sulfur batteries. Energy Storage Materials, 2018, 14, 75-81.	9.5	33
83	A novel magnesium electrolyte containing a magnesium bis(diisopropyl)amide–magnesium chloride complex for rechargeable magnesium batteries. Journal of Materials Chemistry A, 2019, 7, 18295-18303.	5.2	32
84	An Antipulverization and High ontinuity Lithium Metal Anode for Highâ€Energy Lithium Batteries. Advanced Materials, 2021, 33, e2105029.	11.1	32
85	Oxidized starch as a superior binder for silicon anodes in lithium-ion batteries. RSC Advances, 2016, 6, 97084-97088.	1.7	31
86	Molybdenum dioxide hollow microspheres for cathode material in rechargeable hybrid battery using magnesium anode. Journal of Solid State Electrochemistry, 2015, 19, 3347-3353.	1.2	30
87	Bicomponent electrolyte additive excelling fluoroethylene carbonate for high performance Si-based anodes and lithiated Si-S batteries. Energy Storage Materials, 2019, 20, 388-394.	9.5	30
88	Prospect of Sulfurized Pyrolyzed Poly(acrylonitrile) (S@pPAN) Cathode Materials for Rechargeable Lithium Batteries. Angewandte Chemie, 2020, 132, 7374-7386.	1.6	30
89	Enhanced Performance of a Lithium–Sulfur Battery Using a Carbonateâ€Based Electrolyte. Angewandte Chemie, 2016, 128, 10528-10531.	1.6	28
90	AlF ₃ -Modified carbon nanofibers as a multifunctional 3D interlayer for stable lithium metal anodes. Chemical Communications, 2018, 54, 8347-8350.	2.2	28

#	Article	IF	CITATIONS
91	Dense and high loading sulfurized pyrolyzed poly (acrylonitrile)(S@pPAN) cathode for rechargeable lithium batteries. Energy Storage Materials, 2020, 31, 187-194.	9.5	28
92	Recent progress on selenium-based cathode materials for rechargeable magnesium batteries: A mini review. Journal of Materials Science and Technology, 2021, 91, 168-177.	5.6	28
93	Prelithiation Activates Fe ₂ (MoO ₄) ₃ Cathode for Rechargeable Hybrid Mg ²⁺ /Li ⁺ Batteries. ACS Applied Materials & Interfaces, 2017, 9, 38455-38466.	4.0	26
94	SnSe ₂ /FeSe ₂ Nanocubes Capsulated in Nitrogenâ€Doped Carbon Realizing Stable Sodiumâ€lon Storage at Ultrahigh Rate. Small Methods, 2021, 5, e2100437.	4.6	26
95	A new flame-retardant polymer electrolyte with enhanced Li-ion conductivity for safe lithium-sulfur batteries. Journal of Energy Chemistry, 2022, 65, 616-622.	7.1	26
96	Zn anode sustaining high rate and high loading in organic electrolyte for rechargeable batteries. Energy Storage Materials, 2022, 46, 523-534.	9.5	25
97	Suppressing Dendrite Growth of a Lithium Metal Anode by Modifying Conventional Polypropylene Separators with a Composite Layer. ACS Applied Energy Materials, 2020, 3, 506-513.	2.5	24
98	Electrolyte design strategies towards long-term Zn metal anode for rechargeable batteries. Journal of Energy Chemistry, 2022, 73, 575-587.	7.1	24
99	A lithium-ion oxygen battery with a Si anode lithiated <i>in situ</i> by a Li ₃ N-containing cathode. Chemical Communications, 2018, 54, 1069-1072.	2.2	23
100	An Intrinsic Flameâ€Retardant Organic Electrolyte for Safe Lithiumâ€Sulfur Batteries. Angewandte Chemie, 2019, 131, 801-805.	1.6	23
101	Electrochemical polymerization of nonflammable electrolyte enabling fast-charging lithium-sulfur battery. Energy Storage Materials, 2022, 50, 387-394.	9.5	23
102	Lithium-rich Li2.6BMg0.05 alloy as an alternative anode to metallic lithium for rechargeable lithium batteries. Electrochimica Acta, 2011, 56, 8900-8905.	2.6	22
103	Charge/discharge characteristics of sulfur composite electrode at different temperature and current density in rechargeable lithium batteries. Ionics, 2008, 14, 335-337.	1.2	21
104	Towards a Safe Lithium–Sulfur Battery with a Flameâ€Inhibiting Electrolyte and a Sulfurâ€Based Composite Cathode. Angewandte Chemie, 2014, 126, 10263-10268.	1.6	20
105	Boosting the Sodiation Capability and Stability of FeP by In Situ Anchoring on the Graphene Conductive Framework. ChemNanoMat, 2018, 4, 309-315.	1.5	19
106	A Chlorine-Free Electrolyte Based on Non-nucleophilic Magnesium Bis(diisopropyl)amide and Ionic Liquid for Rechargeable Magnesium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 32957-32967.	4.0	19
107	Rechargeable hybrid organic Zn battery (ReHOZnB) with non-flammable electrolyte. Journal of Electroanalytical Chemistry, 2022, 904, 115949.	1.9	19
108	Highly stable lithium metal composite anode with a flexible 3D lithiophilic skeleton. Nano Energy, 2022, 95, 107013.	8.2	19

#	Article	IF	CITATIONS
109	Superior rate capability of a sulfur composite cathode in a tris(trimethylsilyl)borate-containing functional electrolyte. Chemical Communications, 2016, 52, 14430-14433.	2.2	18
110	Integrated Composite Polymer Electrolyte Cross-Linked with SiO ₂ -Reinforced Layer for Enhanced Li-Ion Conductivity and Lithium Dendrite Inhibition. ACS Applied Energy Materials, 2020, 3, 8552-8561.	2.5	18
111	Scalable and Costâ€Effective Preparation of Hierarchical Porous Silicon with a High Conversion Yield for Superior Lithiumâ€Ion Storage. Energy Technology, 2016, 4, 593-599.	1.8	17
112	Sulfurized-Pyrolyzed Polyacrylonitrile Cathode for Magnesium-Sulfur Batteries Containing Mg2+/Li+ Hybrid Electrolytes. Chemical Engineering Journal, 2022, 427, 130902.	6.6	17
113	Reversible Deposition and Dissolution of Magnesium from Imidazolium-Based Ionic Liquids. International Journal of Electrochemistry, 2012, 2012, 1-8.	2.4	16
114	A novel thiolate-based electrolyte system for rechargeable magnesium batteries. Electrochimica Acta, 2014, 121, 258-263.	2.6	16
115	Silica-nanoresin crosslinked composite polymer electrolyte for ambient-temperature all-solid-state lithium batteries. Materials Chemistry Frontiers, 2021, 5, 6502-6511.	3.2	16
116	A crosslinking hydrogel binder for high-sulfur content S@pPAN cathode in rechargeable lithium batteries. Journal of Energy Chemistry, 2021, 60, 360-367.	7.1	16
117	Nano-/Microhierarchical-Structured LiMn _{0.85} Fe _{0.15} PO ₄ Cathode Material for Advanced Lithium Ion Battery. ACS Applied Materials & Interfaces, 2018, 10, 43552-43560.	4.0	15
118	Controlled Synthesis of Porous Carbon Nanostructures with Tunable Closed Mesopores via a Silica-Assisted Coassembly Strategy. CCS Chemistry, 2021, 3, 1410-1422.	4.6	15
119	A Novel Filler for Gel Polymer Electrolyte with a High Lithium-Ion Transference Number toward Stable Cycling for Lithium-Metal Anodes in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 48622-48633.	4.0	15
120	Highly Reversible Lithiumâ€ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithiumâ€ion Batteries. ChemSusChem, 2015, 8, 2621-2624.	3.6	14
121	A superb 3D composite lithium metal anode prepared by in-situ lithiation of sulfurized polyacrylonitrile. Energy Storage Materials, 2020, 33, 452-459.	9.5	14
122	Sodium Polyacrylate as a Promising Aqueous Binder of S@pPAN Cathodes for Magnesium–Sulfur Batteries. Journal of Physical Chemistry C, 2020, 124, 20712-20721.	1.5	14
123	Dramatic improvement in high-rate capability of LiMnPO4 nanosheets via crystallite size regulation. Journal of Alloys and Compounds, 2022, 894, 162510.	2.8	14
124	Carbyne Polysulfide as a Novel Cathode Material for Rechargeable Magnesium Batteries. Scientific World Journal, The, 2014, 2014, 1-7.	0.8	13
125	A polyimide ion-conductive protection layer to suppress side reactions on Li4Ti5O12electrodes at elevated temperature. RSC Advances, 2014, 4, 10280-10283.	1.7	13
126	Hierarchical porous carbon derived from animal bone as matric to encapsulated selenium for high performance Li–Se battery. Rare Metals, 2017, 36, 434-441.	3.6	12

#	Article	IF	CITATIONS
127	In-situ mechanochemical synthesis of sub-micro Si/Sn@SiOx-C composite as high-rate anode material for lithium-ion batteries. Electrochimica Acta, 2021, 384, 138413.	2.6	12
128	Sulfurized Polyacrylonitrile Cathode Derived from Intermolecular Cross-Linked Polyacrylonitrile for a Rechargeable Lithium Battery. ACS Applied Energy Materials, 2021, 4, 5706-5712.	2.5	11
129	Coupling-Agent-Coordinated Uniform Polymer Coating on LiNi _{0.6} Co _{0.2} Mn _{0.2} O ₂ for Improved Electrochemical Performance at Elevated Temperatures. ACS Applied Materials & Interfaces, 2021, 13, 26971-26980.	4.0	10
130	Artificial Alloy/Li ₃ N Double-Layer Enabling Stable High-Capacity Lithium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 13132-13139.	2.5	10
131	A Se-Doped S@CMK3 Composite as a High-Performance Cathode for Magnesium–Sulfur Batteries with Mg ²⁺ /Li ⁺ Hybrid Electrolytes. Journal of Physical Chemistry C, 2021, 125, 25959-25967.	1.5	10
132	Nanoporous silicon from low-cost natural clinoptilolite for lithium storage. RSC Advances, 2015, 5, 56772-56779.	1.7	8
133	A new electrolyte with good compatibility to a lithium anode for non-aqueous Li–O ₂ batteries. RSC Advances, 2016, 6, 47820-47823.	1.7	8
134	High performance nano-sized LiMn _{1â^'x} Fe _x PO ₄ cathode materials for advanced lithium-ion batteries. RSC Advances, 2017, 7, 43708-43715.	1.7	7
135	Building high performance silicon–oxygen and silicon–sulfur battery by in-situ lithiation of fibrous Si/C anode. Journal of Alloys and Compounds, 2019, 806, 335-342.	2.8	7
136	A Porous and Interconnected Polypyrrole Film with High Conductivity and Ion Accessibility as Electrode for Flexible Allâ€Solidâ€State Supercapacitors. ChemElectroChem, 2019, 6, 5479-5485.	1.7	7
137	Effect of copper to Selenium@Microporous carbon cathode for Mg–Se batteries with nucleophilic electrolyte. Electrochimica Acta, 2020, 330, 135354.	2.6	7
138	Dendrite-Free and Micron-Columnar Li Metal Deposited from LiNO ₃ -Based Electrolytes. ACS Applied Energy Materials, 2021, 4, 11336-11342.	2.5	7
139	Boosting the current capability and reversibility of Zn anode for high-performance Zinc batteries. Chemical Engineering Journal, 2022, 447, 137496.	6.6	6
140	Effect of Synthesis Processes on the Microstructure and Electrochemical Properties of LiMnPO4 Cathode Material. Industrial & Engineering Chemistry Research, 0, , .	1.8	4
141	Reduced Graphene Oxide (rGO)â€Supported and Pyrolytic Carbon (PC)â€Coated γâ€Fe ₂ O ₃ /PCâ€rGO Composite Anode Material with Enhanced Li Storage Performance. Chemistry - an Asian Journal, 2022, 17, .	1.7	4
142	High-energy silicon-sulfurized poly(acrylonitrile) battery based on a nitrogen evolution reaction. Science Bulletin, 2022, 67, 256-262.	4.3	3
143	Enhanced Cycle Stability of Li _{1.2} Ni _{0.13} Mn _{0.54} Co _{0.13} O ₂ Cathode with Sodium Oxalyldifluoroborate Electrolyte Salt for Hybrid Liâ€Na Ion Battery. ChemistrySelect, 2021, 6, 12288-12294.	0.7	2