Charlie Wilson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1516048/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advancing energy and well-being research. Nature Sustainability, 2022, 5, 98-103.	11.5	20
2	Social influence in the adoption of digital consumer innovations for climate change. Energy Policy, 2022, 162, 112800.	4.2	14
3	Translating Global Integrated Assessment Model Output into Lifestyle Change Pathways at the Country and Household Level. Energies, 2022, 15, 1650.	1.6	7
4	Social networks and communication behaviour underlying smart home adoption in the UK. Environmental Innovation and Societal Transitions, 2021, 38, 82-97.	2.5	20
5	Decarbonising the critical sectors of aviation, shipping, road freight and industry to limit warming to 1.5–2°C. Climate Policy, 2021, 21, 455-474.	2.6	72
6	Reviewing the scope and thematic focus of 100 000 publications on energy consumption, services and social aspects of climate change: a big data approach to demand-side mitigation [*] . Environmental Research Letters, 2021, 16, 033001.	2.2	34
7	Evaluating process-based integrated assessment models of climate change mitigation. Climatic Change, 2021, 166, 1.	1.7	33
8	Climate mitigation scenarios with persistent COVID-19-related energy demand changes. Nature Energy, 2021, 6, 1114-1123.	19.8	47
9	Application of experience curves and learning to other fields. , 2020, , 49-62.		0
10	Potential Climate Benefits of Digital Consumer Innovations. Annual Review of Environment and Resources, 2020, 45, 113-144.	5.6	29
11	Low carbon innovations for mobility, food, homes and energy: A synthesis of consumer attributes. Renewable and Sustainable Energy Reviews, 2020, 130, 109954.	8.2	9
12	Granular technologies to accelerate decarbonization. Science, 2020, 368, 36-39.	6.0	108
13	Energy modellers should explore extremes more systematically in scenarios. Nature Energy, 2020, 5, 104-107.	19.8	71
14	Are low-carbon innovations appealing? A typology of functional, symbolic, private and public attributes. Energy Research and Social Science, 2020, 64, 101422.	3.0	12
15	Energy Transition Pathways to a low-carbon Europe in 2050: the degree of cooperation and the level of decentralization. Economics of Energy and Environmental Policy, 2020, 9, .	0.7	7
16	The potential contribution of disruptive low-carbon innovations to 1.5°C climate mitigation. Energy Efficiency, 2019, 12, 423-440.	1.3	32
17	Drivers of declining CO2 emissions in 18 developed economies. Nature Climate Change, 2019, 9, 213-217.	8.1	307
18	Analysing energy innovation portfolios from a systemic perspective. Energy Policy, 2019, 134, 110942.	4.2	6

#	Article	IF	CITATIONS
19	Analysing future change in the EU's energy innovation system. Energy Strategy Reviews, 2019, 24, 279-299.	3.3	15
20	Demand-side approaches for limiting global warming to 1.5°C. Energy Efficiency, 2019, 12, 343-362.	1.3	66
21	Comparing future patterns of energy system change in 2â€ [−] °C scenarios to expert projections. Global Environmental Change, 2018, 50, 201-211.	3.6	25
22	Quantitative modelling of why and how homeowners decide to renovate energy efficiently. Applied Energy, 2018, 212, 1333-1344.	5.1	64
23	The diffusion of domestic energy efficiency policies: A spatial perspective. Energy Policy, 2018, 114, 77-88.	4.2	41
24	Learning to live in a smart home. Building Research and Information, 2018, 46, 127-139.	2.0	188
25	Disruptive low-carbon innovations. Energy Research and Social Science, 2018, 37, 216-223.	3.0	52
26	Critical perspectives on disruptive innovation and energy transformation. Energy Research and Social Science, 2018, 37, 211-215.	3.0	33
27	Interactions between social learning and technological learning in electric vehicle futures. Environmental Research Letters, 2018, 13, 124004.	2.2	27
28	Interaction of consumer preferences and climate policies in the global transition to low-carbon vehicles. Nature Energy, 2018, 3, 664-673.	19.8	122
29	Time to get ready: Conceptualizing the temporal and spatial dynamics of formative phases for energy technologies. Energy Policy, 2018, 119, 282-293.	4.2	22
30	A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nature Energy, 2018, 3, 515-527.	19.8	733
31	Improving the behavioral realism of global integrated assessment models: An application to consumers' vehicle choices. Transportation Research, Part D: Transport and Environment, 2017, 55, 322-342.	3.2	140
32	Benefits and risks of smart home technologies. Energy Policy, 2017, 103, 72-83.	4.2	363
33	Social signals and sustainability: ambiguity about motivations can affect status perceptions of efficiency and curtailment behaviors. Environment Systems and Decisions, 2017, 37, 184-197.	1.9	22
34	Introduction: Smart Homes and Their Users. Human-computer Interaction Series, 2017, , 1-14.	0.4	4
35	Modelling social influence and cultural variation in global low-carbon vehicle transitions. Global Environmental Change, 2017, 47, 76-87.	3.6	41
36	Social influence in the global diffusion of alternative fuel vehicles – A meta-analysis. Journal of Transport Geography, 2017, 62, 247-261.	2.3	77

#	Article	IF	CITATIONS
37	Stranded research? Leading finance journals are silent on climate change. Climatic Change, 2017, 143, 243-260.	1.7	68
38	Smart Homes and Their Users. Human-computer Interaction Series, 2017, , .	0.4	38
39	Perceived Benefits and Risks of Smart Home Technologies. Human-computer Interaction Series, 2017, , 35-53.	0.4	9
40	Control of Smart Home Technologies. Human-computer Interaction Series, 2017, , 91-105.	0.4	2
41	Domestication of Smart Home Technologies. Human-computer Interaction Series, 2017, , 75-90.	0.4	0
42	Analytical Framework for Research on Smart Homes and Their Users. Human-computer Interaction Series, 2017, , 15-34.	0.4	1
43	Measuring the duration of formative phases for energy technologies. Environmental Innovation and Societal Transitions, 2016, 21, 95-112.	2.5	82
44	Apples, oranges, and consistent comparisons of the temporal dynamics of energy transitions. Energy Research and Social Science, 2016, 22, 18-25.	3.0	146
45	Measuring the energy intensity of domestic activities from smart meter data. Applied Energy, 2016, 183, 1565-1580.	5.1	73
46	Comparing future patterns of energy system change in 2 °C scenarios with historically observed rates of change. Global Environmental Change, 2015, 35, 436-449.	3.6	42
47	Smart homes and their users: a systematic analysis and key challenges. Personal and Ubiquitous Computing, 2015, 19, 463-476.	1.9	368
48	The influence of contextual cues on the perceived status of consumption-reducing behavior. Ecological Economics, 2015, 117, 108-117.	2.9	32
49	The appeal of the green deal: Empirical evidence for the influence of energy efficiency policy on renovating homeowners. Energy Policy, 2015, 79, 161-176.	4.2	94
50	Why do homeowners renovate energy efficiently? Contrasting perspectives and implications for policy. Energy Research and Social Science, 2015, 7, 12-22.	3.0	199
51	Diagnostic indicators for integrated assessment models of climate policy. Technological Forecasting and Social Change, 2015, 90, 45-61.	6.2	104
52	Technical, economic, social, and cultural perspectives on energy demand. , 2015, , 125-147.		1
53	Improving efficiency in buildings. , 2015, , 162-188.		3
54	The â€~Four Dimensions of Behaviour' framework: a tool for characterising behaviours to help design better interventions. Transportation Planning and Technology, 2014, 37, 38-61.	0.9	30

1

#	Article	IF	CITATIONS
55	Future capacity growth of energy technologies: are scenarios consistent with historical evidence?. Climatic Change, 2013, 118, 381-395.	1.7	111
56	The challenge to keep global warming below 2 ŰC. Nature Climate Change, 2013, 3, 4-6.	8.1	809
57	Policies for Energy Technology Innovation. , 2013, , 371-387.		1
58	Sources and Consequences of Knowledge Depreciation. , 2013, , 133-145.		10
59	Up-scaling, formative phases, and learning in the historical diffusion of energy technologies. Energy Policy, 2012, 50, 81-94.	4.2	138
60	The Energy Technology Innovation System. Annual Review of Environment and Resources, 2012, 37, 137-162.	5.6	223
61	Marginalization of end-use technologies in energy innovation for climate protection. Nature Climate Change, 2012, 2, 780-788.	8.1	137
62	Lessons from the history of technological change for clean energy scenarios and policies. Natural Resources Forum, 2011, 35, 165-184.	1.8	79
63	Trends in investments in global energy research, development, and demonstration. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2, 373-396.	3.6	43
64	Multiple Models to Inform Climate Change Policy: A Pragmatic Response to the â€~Beyond the ABC' Debate. Environment and Planning A, 2011, 43, 2781-2787.	2.1	53
65	Structured decision-making to link climate change and sustainable development. Climate Policy, 2007, 7, 353-370.	2.6	32
66	Models of Decision Making and Residential Energy Use. Annual Review of Environment and Resources, 2007, 32, 169-203.	5.6	567
67	Structured decision-making to link climate change and sustainable development. Climate Policy, 2007, 7, 353-370.	2.6	5
68	Title is missing!. , 2000, 5, 51-60.		136
69	Policies for the Energy Technology Innovation System (ETIS). , 0, , 1665-1744.		29
70	Energy Pathways for Sustainable Development. , 0, , 1205-1306.		29
71	Historical Case Studies of Energy Technology Innovation. , 0, , 30-36.		0

72 Technology Portfolios: Modelling Technological Uncertainty and Innovation Risks. , 0, , 89-102.

5

#	Article	IF	CITATIONS
73	Input, Output, and Outcome Metrics for Assessing Energy Technology Innovation. , 0, , 75-88.		1
74	The Energy Technology Innovation System. , 0, , 11-29.		0
75	Energy Technology Innovation. , 0, , 3-10.		0
76	Grand Designs: Historical Patterns and Future Scenarios of Energy Technological Change. , 0, , 39-53.		3
77	Historical Diffusion and Growth of Energy Technologies. , 0, , 54-74.		1
78	Clobal R&D, Market Formation, and Diffusion Investments in Energy Technology Innovation. , 0, , 292-308.		2
79	A Comparative Analysis of Annual Market Investments in Energy Supply and End-Use Technologies. , 0, , 332-346.		3
80	Lessons Learnt from the Energy Technology Innovation System. , 0, , 349-370.		0