Edlaine Linares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1516019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Can Cellular Labile Iron Pool be Considered Solely a Proâ€oxidant Species in Cells?. FASEB Journal, 2019, 33, 351.4.	0.5	1
2	The labile iron pool attenuates peroxynitrite-dependent damage and can no longer be considered solely a pro-oxidative cellular iron source. Journal of Biological Chemistry, 2018, 293, 8530-8542.	3.4	18
3	Kinetics, subcellular localization, and contribution to parasite virulence of a <i>Trypanosoma cruzi</i> hybrid type A heme peroxidase (<i>Tc</i> APx-CcP). Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1326-E1335.	7.1	21
4	Aromatic thiol-mediated cleavage of N–O bonds enables chemical ubiquitylation of folded proteins. Nature Communications, 2016, 7, 12979.	12.8	52
5	Effects of hyperbaric oxygen on <i>Pseudomonas aeruginosa</i> susceptibility to imipenem and macrophages. Future Microbiology, 2015, 10, 179-189.	2.0	28
6	Oxidation of the Tryptophan 32 Residue of Human Superoxide Dismutase 1 Caused by Its Bicarbonate-dependent Peroxidase Activity Triggers the Non-amyloid Aggregation of the Enzyme. Journal of Biological Chemistry, 2014, 289, 30690-30701.	3.4	33
7	Tempol Moderately Extends Survival in a hSOD1G93A ALS Rat Model by Inhibiting Neuronal Cell Loss, Oxidative Damage and Levels of Non-Native hSOD1G93A Forms. PLoS ONE, 2013, 8, e55868.	2.5	19
8	Tempol ameliorates murine viral encephalomyelitis by preserving the blood–brain barrier, reducing viral load, and lessening inflammation. Free Radical Biology and Medicine, 2010, 48, 704-712.	2.9	23
9	Regulatory Effects of Nitric Oxide on Src Kinase, FAK, p130Cas, and Receptor Protein Tyrosine Phosphatase Alpha (PTP-α): A Role for the Cellular Redox Environment. Antioxidants and Redox Signaling, 2010, 13, 109-125.	5.4	24
10	Argininosuccinate Synthetase Is a Functional Target for a Snake Venom Anti-hypertensive Peptide. Journal of Biological Chemistry, 2009, 284, 20022-20033.	3.4	66
11	Evidence of a Ca2+- NO-cGMP signaling pathway controlling zoospore biogenesis in the aquatic fungus Blastocladiella emersonii. Fungal Genetics and Biology, 2009, 46, 575-584.	2.1	38
12	Inhibition of in vivo leishmanicidal mechanisms by tempol: Nitric oxide down-regulation and oxidant scavenging. Free Radical Biology and Medicine, 2008, 44, 1668-1676.	2.9	32
13	DNA damage by sulfite autoxidation catalyzed by cobalt complexes. Dalton Transactions, 2008, , 5636.	3.3	17
14	Cyclic nitroxides inhibit the toxicity of nitric oxide-derived oxidants: mechanisms and implications. Anais Da Academia Brasileira De Ciencias, 2008, 80, 179-189.	0.8	35
15	DNA damage and 2′-deoxyguanosine oxidation induced by S(IV) autoxidation catalyzed by copper(II) tetraglycine complexes: Synergistic effect of a second metal ion. Journal of Inorganic Biochemistry, 2007, 101, 866-875.	3.5	30
16	Association between nitric oxide synthesis and vaccination-acquired resistance to murine hepatitis virus by spf mice. Free Radical Biology and Medicine, 2006, 41, 1534-1541.	2.9	4
17	Oxidative DNA damage induced by autoxidation of microquantities of S(iv) in the presence of Ni(ii)–Gly-Gly-His. Dalton Transactions, 2005, , 3738.	3.3	18
18	EPR studies of in vivo radical production by lipopolysaccharide: potential role of iron mobilized from iron-nitrosyl complexes. Free Radical Biology and Medicine, 2003, 34, 766-773.	2.9	17

Edlaine Linares

#	Article	IF	CITATIONS
19	Kinetics and Mechanism of the Reaction of a Nitroxide Radical (Tempol) With a Phenolic Antioxidant. Free Radical Research, 2003, 37, 225-230.	3.3	14
20	Reaction of Human Hemoglobin with Peroxynitrite. Journal of Biological Chemistry, 2003, 278, 44049-44057.	3.4	114
21	EPR Detection of Glutathiyl and Hemoglobin-cysteinyl Radicals during the Interaction of Peroxynitrite with Human Erythrocytesâ€. Biochemistry, 2002, 41, 14323-14328.	2.5	32
22	Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. Free Radical Biology and Medicine, 2002, 32, 841-859.	2.9	477
23	Role of peroxynitrite in macrophage microbicidal mechanisms in vivo revealed by protein nitration and hydroxylation. Free Radical Biology and Medicine, 2001, 30, 1234-1242.	2.9	111
24	Leishmania amazonensis Infection Does Not Inhibit Systemic Nitric Oxide Levels Elicited by Lipopolysaccharide In vivo. Journal of Parasitology, 2000, 86, 78.	0.7	2
25	LEISHMANIA AMAZONENSISINFECTION DOES NOT INHIBIT SYSTEMIC NITRIC OXIDE LEVELS ELICITED BY LIPOPOLYSACCHARIDE IN VIVO. Journal of Parasitology, 2000, 86, 78-82.	0.7	15
26	In Vivo Formation of Electron Paramagnetic Resonance-Detectable Nitric Oxide and of Nitrotyrosine Is Not Impaired during Murine Leishmaniasis. Infection and Immunity, 1998, 66, 807-814.	2.2	51
27	Formation of Nitrosyl Hemoglobin and Nitrotyrosine during Murine Leishmaniasis*. Photochemistry and Photobiology, 1996, 63, 750-754.	2.5	32