Mei He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/151509/publications.pdf

Version: 2024-02-01

623734 752698 2,035 21 14 20 citations h-index g-index papers 25 25 25 2997 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	A microfluidic ExoSearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab on A Chip, 2016, 16, 489-496.	6.0	523
2	Integrated immunoisolation and protein analysis of circulating exosomes using microfluidic technology. Lab on A Chip, 2014, 14, 3773.	6.0	412
3	Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab on A Chip, 2016, 16, 3033-3042.	6.0	309
4	3D cell culture stimulates the secretion of in vivo like extracellular vesicles. Scientific Reports, 2019, 9, 13012.	3.3	159
5	Microfluidic Exosome Analysis toward Liquid Biopsy for Cancer. Journal of the Association for Laboratory Automation, 2016, 21, 599-608.	2.8	141
6	Unlocking the Power of Exosomes for Crossing Biological Barriers in Drug Delivery. Pharmaceutics, 2021, 13, 122.	4.5	112
7	Microfluidic engineering of exosomes: editing cellular messages for precision therapeutics. Lab on A Chip, 2018, 18, 1690-1703.	6.0	84
8	Microfluidic on-demand engineering of exosomes towards cancer immunotherapy. Lab on A Chip, 2019, 19, 1877-1886.	6.0	67
9	3D printed auto-mixing chip enables rapid smartphone diagnosis of anemia. Biomicrofluidics, 2016, 10, 054113.	2.4	52
10	Extracellular Vesicles as an Advanced Delivery Biomaterial for Precision Cancer Immunotherapy. Advanced Healthcare Materials, 2022, 11, e2100650.	7.6	27
11	Advanced Biomaterials for Cellâ€Specific Modulation and Restore of Cancer Immunotherapy. Advanced Science, 2022, 9, e2200027.	11.2	26
12	3D-printing enabled micro-assembly of a microfluidic electroporation system for 3D tissue engineering. Lab on A Chip, 2019, 19, 2362-2372.	6.0	25
13	Biologically Enhanced Starch Bioâ€Ink for Promoting 3D Cell Growth. Advanced Materials Technologies, 2021, 6, 2100551.	5.8	23
14	Lightâ€induced highâ€efficient cellular production of immune functional extracellular vesicles. Journal of Extracellular Vesicles, 2022, 11, e12194.	12.2	18
15	Nano pom-poms prepared exosomes enable highly specific cancer biomarker detection. Communications Biology, 2022, 5, .	4.4	16
16	Cancer spheroids derived exosomes reveal more molecular features relevant to progressed cancer. Biochemistry and Biophysics Reports, 2021, 26, 101026.	1.3	11
17	Development of surface engineered antigenic exosomes as vaccines for respiratory syncytial virus. Scientific Reports, 2021, 11, 21358.	3.3	11
18	Isolation of sensory hair cell specific exosomes in human perilymph. Neuroscience Letters, 2021, 764, 136282.	2.1	8

#	Article	IF	CITATION
19	Remote Sensing and Remote Actuation via Silicone–Magnetic Nanorod Composites. Advanced Materials Technologies, 2021, 6, 2001099.	5.8	4
20	Remote-Controlled 3D Porous Magnetic Interface toward High-Throughput Dynamic 3D Cell Culture. ACS Biomaterials Science and Engineering, 2021, 7, 4535-4544.	5.2	2
21	3D printed microfluidic devices and applications. , 2021, , 659-679.		2