Michael P Speed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1515038/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A theory for investment across defences triggered at different stages of a predator-prey encounter. Journal of Theoretical Biology, 2019, 473, 9-19.	1.7	8
2	The evolution of variance in sequential defences. Journal of Theoretical Biology, 2019, 462, 194-209.	1.7	2
3	An individual-based profitability spectrum for understanding interactions between predators and their prey. Biological Journal of the Linnean Society, 2018, 125, 1-13.	1.6	28
4	The biology of color. Science, 2017, 357, .	12.6	509
5	Quantification provides a conceptual basis for convergent evolution. Biological Reviews, 2017, 92, 815-829.	10.4	54
6	Analysing Convergent Evolution: A Practical Guide to Methods. , 2016, , 23-36.		11
7	Parameterising a public good: how experiments on predation can be used to predict cheat frequencies. Evolutionary Ecology, 2016, 30, 825-840.	1.2	4
8	"Parasite-induced aposematism―protects entomopathogenic nematode parasites against invertebrate enemies. Behavioral Ecology, 2016, 27, 645-651.	2.2	17
9	A field demonstration of the costs and benefits of group living to edible and defended prey. Biology Letters, 2015, 11, 20150152.	2.3	18
10	Coevolution can explain defensive secondary metabolite diversity in plants. New Phytologist, 2015, 208, 1251-1263.	7.3	71
11	Antipredator defenses predict diversification rates. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13597-13602.	7.1	68
12	Florivory as an Opportunity Benefit of Aposematism. American Naturalist, 2015, 186, 728-741.	2.1	9
13	Antagonistic evolution in an aposematic predator-prey signaling system. Evolution; International Journal of Organic Evolution, 2014, 68, 2996-3007.	2.3	10
14	Ecological pharmacodynamics: prey toxin evolution depends on the physiological characteristics of predators. Animal Behaviour, 2014, 98, 53-67.	1.9	11
15	A simple measure of the strength of convergent evolution. Methods in Ecology and Evolution, 2014, 5, 685-693.	5.2	82
16	Does chemical defence increase niche space? A phylogenetic comparative analysis of the Musteloidea. Evolutionary Ecology, 2013, 27, 863-881.	1.2	22
17	Defence Cheats Can Degrade Protection of Chemically Defended Prey. Ethology, 2013, 119, 52-57.	1.1	12
18	Why are defensive toxins so variable? An evolutionary perspective. Biological Reviews, 2012, 87, 874-884	10.4	81

MICHAEL P SPEED

#	Article	IF	CITATIONS
19	Prey community structure affects how predators select for Müllerian mimicry. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2099-2105.	2.6	47
20	How the ladybird got its spots: effects of resource limitation on the honesty of aposematic signals. Functional Ecology, 2012, 26, 334-342.	3.6	72
21	Masquerade is associated with polyphagy and larval overwintering in Lepidoptera. Biological Journal of the Linnean Society, 2012, 106, 90-103.	1.6	10
22	Honest Signaling and the Uses of Prey Coloration. American Naturalist, 2011, 178, E1-E9.	2.1	24
23	Growth and reproductive costs of larval defence in the aposematic lepidopteran Pieris brassicae. Journal of Animal Ecology, 2011, 80, 384-392.	2.8	40
24	Density-dependent predation influences the evolution and behavior of masquerading prey. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6532-6536.	7.1	56
25	Can dietary conservatism explain the primary evolution of aposematism?. Animal Behaviour, 2010, 79, 63-74.	1.9	24
26	The effect of metapopulation dynamics on the survival and spread of a novel, conspicuous prey. Journal of Theoretical Biology, 2010, 267, 319-329.	1.7	1
27	THE DUAL BENEFITS OF APOSEMATISM: PREDATOR AVOIDANCE AND ENHANCED RESOURCE COLLECTION. Evolution; International Journal of Organic Evolution, 2010, 64, 1622-1633.	2.3	49
28	Diversification of honest signals in a predator–prey system. Ecology Letters, 2010, 13, 744-753.	6.4	31
29	Mimicry between unequally defended prey can be parasitic: evidence for quasiâ€Batesian mimicry. Ecology Letters, 2010, 13, 1494-1502.	6.4	63
30	A tale of 2 signals: signal mimicry between aposematic species enhances predator avoidance learning. Behavioral Ecology, 2010, 21, 851-860.	2.2	35
31	Imperfect Batesian Mimicry and the Conspicuousness Costs of Mimetic Resemblance. American Naturalist, 2010, 176, E1-E14.	2.1	35
32	Masquerade: Camouflage Without Crypsis. Science, 2010, 327, 51-51.	12.6	198
33	Warning displays may function as honest signals of toxicity. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 871-877.	2.6	112
34	Evolutionarily Stable Investment in Anti-Predatory Defences and Aposematic Signalling. , 2008, , 37-48.		2
35	Co-mimics have a mutualistic relationship despite unequal defences. Nature, 2007, 448, 64-67.	27.8	137
36	HOW BRIGHT AND HOW NASTY: EXPLAINING DIVERSITY IN WARNING SIGNAL STRENGTH. Evolution; International Journal of Organic Evolution, 2007, 61, 623-635.	2.3	84

#	Article	IF	CITATIONS
37	THE IMPORTANCE OF INITIAL PROTECTION OF CONSPICUOUS MUTANTS FOR THE COEVOLUTION OF DEFENSE AND APOSEMATIC SIGNALING OF THE DEFENSE: A MODELING STUDY. Evolution; International Journal of Organic Evolution, 2007, 61, 2165-2174.	2.3	10
38	Automimicry and the evolution of discrete prey defences. Biological Journal of the Linnean Society, 2006, 87, 393-402.	1.6	26
39	How can automimicry persist when predators can preferentially consume undefended mimics?. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 373-378.	2.6	24
40	A taste for mimicry. Nature, 2005, 433, 205-207.	27.8	12
41	WARNING DISPLAYS IN SPINY ANIMALS: ONE (MORE) EVOLUTIONARY ROUTE TO APOSEMATISM. Evolution; International Journal of Organic Evolution, 2005, 59, 2499-2508.	2.3	72
42	WARNING DISPLAYS IN SPINY ANIMALS: ONE (MORE) EVOLUTIONARY ROUTE TO APOSEMATISM. Evolution; International Journal of Organic Evolution, 2005, 59, 2499.	2.3	2
43	Countershading enhances crypsis with some bird species but not others. Behavioral Ecology, 2005, 16, 327-334.	2.2	26
44	Aposematism: what should our starting point be?. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 431-438.	2.6	68
45	Warning displays in spiny animals: one (more) evolutionary route to aposematism. Evolution; International Journal of Organic Evolution, 2005, 59, 2499-508.	2.3	15
46	Natural selection on unpalatable species imposed by state-dependent foraging behaviour. Journal of Theoretical Biology, 2004, 228, 217-226.	1.7	87
47	The evolution and maintenance of Batesian mimicry. , 2004, , 139-163.		1
48	The relationship between Batesian and Müllerian mimicry. , 2004, , 164-171.		2
49	The evolution and maintenance of Müllerian mimicry. , 2004, , 115-136.		2
50	Theoretical Developments in the Understanding of Warning Signals. Comments on Theoretical Biology, 2003, 8, 207-224.	0.6	9
51	Can receiver psychology explain the evolution of aposematism?. Animal Behaviour, 2001, 61, 205-216.	1.9	95
52	Warning signals, receiver psychology and predator memory. Animal Behaviour, 2000, 60, 269-278.	1.9	132
53	Testing Müllerian mimicry: an experiment with wild birds. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 725-731.	2.6	79
54	Learning and memory in mimicry: II. Do we understand the mimicry spectrum?. Biological Journal of the Linnean Society, 1999, 67, 281-312.	1.6	89

MICHAEL P SPEED

#	Article	IF	CITATIONS
55	Robot predators in virtual ecologies: the importance of memory in mimicry studies. Animal Behaviour, 1999, 57, 203-213.	1.9	47
56	Virtual predators, receiver psychology and doubts about Müllerian mimicry: comments on MacDougall & Dawkins. Animal Behaviour, 1999, 58, F10-F13.	1.9	2
57	How weird can mimicry get?. Evolutionary Ecology, 1999, 13, 807-827.	1.2	62
58	Mistakes not necessary for Müllerian mimicry. Nature, 1998, 396, 323-323.	27.8	16
59	Muellerian mimicry and the psychology of predation. Animal Behaviour, 1993, 45, 571-580.	1.9	166
60	When is mimicry good for predators?. Animal Behaviour, 1993, 46, 1246-1248.	1.9	47