Jerry A Stitzel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1514797/publications.pdf

Version: 2024-02-01

75 papers 4,810 citations

32 h-index 106344 65 g-index

76 all docs

76 docs citations

76 times ranked 6082 citing authors

#	Article	IF	CITATIONS
1	Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nature Genetics, 2019, 51, 237-244.	21.4	1,307
2	Variants in Nicotinic Receptors and Risk for Nicotine Dependence. American Journal of Psychiatry, 2008, 165, 1163-1171.	7.2	584
3	The \hat{I}^23 Nicotinic Receptor Subunit: A Component of $\hat{I}\pm$ -Conotoxin MII-Binding Nicotinic Acetylcholine Receptors that Modulate Dopamine Release and Related Behaviors. Journal of Neuroscience, 2003, 23, 11045-11053.	3.6	205
4	Multiple distinct risk loci for nicotine dependence identified by dense coverage of the complete family of nicotinic receptor subunit (<i>CHRN</i>) genes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 453-466.	1.7	192
5	Risk for nicotine dependence and lung cancer is conferred by mRNA expression levels and amino acid change in CHRNA5. Human Molecular Genetics, 2009, 18, 3125-3135.	2.9	180
6	Genetic influences on nicotine responses. Pharmacology Biochemistry and Behavior, 1989, 33, 667-678.	2.9	162
7	Nicotine reverses hypofrontality in animal models of addiction and schizophrenia. Nature Medicine, 2017, 23, 347-354.	30.7	142
8	A Risk Allele for Nicotine Dependence in CHRNA5 Is a Protective Allele for Cocaine Dependence. Biological Psychiatry, 2008, 64, 922-929.	1.3	138
9	CHRNA4 and Tobacco Dependence. Archives of General Psychiatry, 2007, 64, 1078.	12.3	114
10	α-Conotoxin BulA, a Novel Peptide from Conus bullatus, Distinguishes among Neuronal Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2005, 280, 80-87.	3.4	106
11	The Incentive Salience of Alcohol. Archives of General Psychiatry, 2008, 65, 841.	12.3	101
12	An autoradiographic analysis of cholinergic receptors in mouse brain. Brain Research Bulletin, 1989, 22, 453-459.	3.0	80
13	Acetylcholine-Stimulated [$\langle \sup 3 \langle \sup H$]GABA Release from Mouse Brain Synaptosomes is Modulated by $\hat{l}\pm 4\hat{l}^22$ and $\hat{l}\pm 4\hat{l}\pm 5\hat{l}^22$ Nicotinic Receptor Subtypes. Molecular Pharmacology, 2009, 75, 918-926.	2.3	65
14	Activation and Inhibition of Mouse Muscle and Neuronal Nicotinic Acetylcholine Receptors Expressed in <i>Xenopus</i> Oocytes. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 501-518.	2.5	59
15	Rare missense variants in CHRNB4 are associated with reduced risk of nicotine dependence. Human Molecular Genetics, 2012, 21, 647-655.	2.9	58
16	A novel genetic marker of decreased inflammation and improved survival after acute myocardial infarction. Basic Research in Cardiology, 2018, 113, 38.	5.9	58
17	Impact of human D398N single nucleotide polymorphism on intracellular calcium response mediated by α3β4α5 nicotinic acetylcholine receptors. Neuropharmacology, 2012, 63, 1002-1011.	4.1	55
18	Influence of kinetics of nicotine administration on tolerance development and receptor levels. Pharmacology Biochemistry and Behavior, 1987, 27, 505-512.	2.9	54

#	Article	IF	CITATIONS
19	Functional characterization of mouse $\hat{l}\pm4\hat{l}^22$ nicotinic acetylcholine receptors stably expressed in HEK293T cells. Journal of Neurochemistry, 2004, 91, 1138-1150.	3.9	52
20	$\hat{l}\pm7\text{-Nicotinic}$ receptor expression and the anatomical organization of hippocampal interneurons. Brain Research, 2001, 922, 180-190.	2.2	48
21	Nicotinic acetylcholine receptors: upregulation, ageâ€related effects and associations with drug use. Genes, Brain and Behavior, 2016, 15, 89-107.	2.2	48
22	Nicotine Impairs Macrophage Control of <i>Mycobacterium tuberculosis</i> . American Journal of Respiratory Cell and Molecular Biology, 2017, 57, 324-333.	2.9	48
23	Interaction of the Nicotinic Cholinergic System with Ethanol Withdrawal. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 591-599.	2.5	46
24	Developmental nicotine exposure precipitates multigenerational maternal transmission of nicotine preference and ADHD-like behavioral, rhythmometric, neuropharmacological, and epigenetic anomalies in adolescent mice. Neuropharmacology, 2019, 149, 66-82.	4.1	44
25	Crucial role of nicotinic α5 subunit variants for Ca ²⁺ fluxes in ventral midbrain neurons. FASEB Journal, 2015, 29, 3389-3398.	0.5	42
26	Potential regulation of nicotine and ethanol actions by $\hat{l}_{\pm}4$ -containing nicotinic receptors. Alcohol, 2001, 24, 69-78.	1.7	41
27	A Polymorphism in the Mouse Neuronal α4 Nicotinic Receptor Subunit Results in An Alteration in Receptor Function. Molecular Pharmacology, 2002, 62, 334-342.	2.3	41
28	Modulation of Nicotine but Not Ethanol Preference by the Mouse Chrna4 A529T Polymorphism Behavioral Neuroscience, 2005, 119, 26-37.	1.2	41
29	A Polymorphism in the ??4 Nicotinic Receptor Gene (Chrna4) Modulates Enhancement of Nicotinic Receptor Function by Ethanol. Alcoholism: Clinical and Experimental Research, 2003, 27, 733-742.	2.4	40
30	Association of <i>CHRN</i> genes with "dizziness―to tobacco. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 600-609.	1.7	37
31	Linkage of strain-specific nicotinic receptor $\hat{l}\pm7$ subunit restriction fragment length polymorphisms with levels of $\hat{l}\pm$ -bungarotoxin binding in brain. Molecular Brain Research, 1996, 43, 30-40.	2.3	34
32	Identification of an alternatively processed nicotinic receptor $\hat{l}\pm7$ subunit RNA in mouse brain. Molecular Brain Research, 2003, 117, 15-26.	2.3	34
33	Long sleep and short sleep mice differ in nicotine-stimulated 86Rb+ efflux and \acute{E}^4 4 nicotinic receptor subunit cDNA sequence. Pharmacogenetics and Genomics, 2001, 11, 331-339.	5.7	32
34	Variability in response to nicotine in the LSxSS RI strains: potential role of polymorphisms in É'4 and É'6 nicotinic receptor genes. Pharmacogenetics and Genomics, 2002, 12, 197-208.	5.7	32
35	Genetic correlation between the free-choice oral consumption of nicotine and alcohol in C57BL/6J ×C3H/HeJ F2 intercross mice. Behavioural Brain Research, 2005, 157, 79-90.	2.2	31
36	A multiancestry study identifies novel genetic associations with <i>CHRNA5 </i> methylation in human brain and risk of nicotine dependence. Human Molecular Genetics, 2015, 24, 5940-5954.	2.9	31

#	Article	IF	CITATIONS
37	Genetic and pharmacological strategies identify a behavioral function of neuronal nicotinic receptors. Behavioural Brain Research, 2000, 113, 57-64.	2.2	30
38	The mouse Chrna4 A529T polymorphism alters the ratio of high to low affinity $\hat{l}\pm4\hat{l}^22$ nAChRs. Neuropharmacology, 2003, 45, 345-354.	4.1	26
39	Nicotinic-agonist stimulated 86Rb+ efflux and [3H]epibatidine binding of mice differing in \hat{l}^2 2 genotype. Neuropharmacology, 2000, 39, 2632-2645.	4.1	24
40	Long-term improvements in sensory inhibition with gestational choline supplementation linked to $\hat{l}\pm7$ nicotinic receptors through studies in Chrna7 null mutation mice. Brain Research, 2014, 1552, 26-33.	2.2	24
41	Developmental nicotine exposure elicits multigenerational disequilibria in proBDNF proteolysis and glucocorticoid signaling in the frontal cortices, striata, and hippocampi of adolescent mice. Biochemical Pharmacology, 2019, 168, 438-451.	4.4	24
42	Comparison of nicotine oral consumption and baseline anxiety measures in adolescent and adult C57BL/6J and C3H/lbg mice. Behavioural Brain Research, 2012, 233, 280-287.	2.2	23
43	Functional characterization of SNPs in CHRNA3/B4 intergenic region associated with drug behaviors. Brain Research, 2013, 1529, 1-15.	2.2	22
44	Chrna4 A529 knock-in mice exhibit altered nicotine sensitivity. Pharmacogenetics and Genomics, 2010, 20, 121-130.	1.5	20
45	Naturally occurring genetic variability in the nicotinic acetylcholine receptor alpha4 and alpha7 subunit genes and phenotypic diversity in humans and mice. Frontiers in Bioscience - Landmark, 2008, 13, 477.	3.0	18
46	\hat{l}_{\pm} 7 Nicotinic Receptor Gene Promoter Polymorphisms in Inbred Mice Affect Expression in a Cell Type-specific Fashion. Journal of Biological Chemistry, 2007, 282, 13220-13227.	3.4	17
47	The \hat{l}^23 subunit of the nicotinic acetylcholine receptor: Modulation of gene expression and nicotine consumption. Neuropharmacology, 2015, 99, 639-649.	4.1	17
48	Alternative CHRNB4 3′-UTRs Mediate the Allelic Effects of SNP rs1948 on Gene Expression. PLoS ONE, 2013, 8, e63699.	2.5	16
49	The effects of oral nicotine administration and abstinence on sleep in male C57BL/6J mice. Psychopharmacology, 2019, 236, 1335-1347.	3.1	15
50	Presynaptic GABAB autoreceptor regulation of nicotinic acetylcholine receptor mediated [3H]-GABA release from mouse synaptosomes. Biochemical Pharmacology, 2014, 91, 87-96.	4.4	13
51	An innate contribution of human nicotinic receptor polymorphisms to COPD-like lesions. Nature Communications, 2021, 12, 6384.	12.8	13
52	Maximizing the effect of an $\hat{l}\pm7$ nicotinic receptor PAM in a mouse model of schizophrenia-like sensory inhibition deficits. Brain Research, 2015, 1611, 8-17.	2.2	11
53	Melatonin administration alters nicotine preference consumption via signaling through high-affinity melatonin receptors. Psychopharmacology, 2015, 232, 2519-2530.	3.1	11
54	Sulfhydryl Modification of Two Nicotinic Binding Sites in Mouse Brain. Journal of Neurochemistry, 1988, 50, 920-928.	3.9	10

#	Article	IF	CITATIONS
55	<i>CYP2A6</i> metabolism in the development of smoking behaviors in young adults. Addiction Biology, 2018, 23, 437-447.	2.6	10
56	Recent advances in gene manipulation and nicotinic acetylcholine receptor biology. Biochemical Pharmacology, 2011, 82, 808-819.	4.4	9
57	Diurnal variation in nicotine sensitivity in mice: Role of genetic background and melatonin. Neuropharmacology, 2012, 63, 966-973.	4.1	9
58	Natural genetic variability of the neuronal nicotinic acetylcholine receptor subunit genes in mice: Consequences and confounds. Neuropharmacology, 2015, 96, 205-212.	4.1	9
59	Developmental nicotine exposure engenders intergenerational downregulation and aberrant posttranslational modification of cardinal epigenetic factors in the frontal cortices, striata, and hippocampi of adolescent mice. Epigenetics and Chromatin, 2020, 13, 13.	3.9	9
60	Uncovering hidden variance: pair-wise SNP analysis accounts for additional variance in nicotine dependence. Human Genetics, 2011, 129, 177-188.	3.8	8
61	Development of hippocampal $\hat{l}\pm7$ nicotinic receptors in C3H and DBA/2 congenic mice. Brain Research, 2006, 1122, 27-35.	2.2	7
62	Chrna7 genotype is linked with alpha7 nicotinic receptor expression but not alpha7 RNA levels. Brain Research, 2009, 1263, 1-9.	2.2	7
63	The Intergenerational Transmission of Developmental Nicotine Exposure-Induced Neurodevelopmental Disorder-Like Phenotypes is Modulated by the Chrna5 D397N Polymorphism in Adolescent Mice. Behavior Genetics, 2021, 51, 665-684.	2.1	6
64	The Role of A Priori–Identified Addiction and Smoking Gene Sets in Smoking Behaviors. Nicotine and Tobacco Research, 2020, 22, 1310-1315.	2.6	5
65	DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure. Biology of Reproduction, 2021, 105, 644-666.	2.7	4
66	Serine residues in the $\hat{l}\pm 4$ nicotinic acetylcholine receptor subunit regulate surface $\hat{l}\pm 4\hat{l}^22^*$ receptor expression and clustering. Biochemical Pharmacology, 2019, 159, 64-73.	4.4	3
67	Chlorisondamine inhibits the nicotine-induced stimulation of c-fos in the pigeon brain for up to 2 weeks. Nicotine and Tobacco Research, 2007, 9, 927-936.	2.6	2
68	Genetic Contributions of the $\hat{l}\pm 5$ Nicotinic Receptor Subunit to Smoking Behavior. Receptors, 2014, , 327-339.	0.2	2
69	Mutation of the $\hat{l}\pm 5$ nicotinic acetylcholine receptor subunit increases ethanol and nicotine consumption in adolescence and impacts adult drug consumption. Neuropharmacology, 2022, 216, 109170.	4.1	2
70	Genetic Modifiers of Oral Nicotine Consumption in Chrna5 Null Mutant Mice. Frontiers in Psychiatry, 2021, 12, 773400.	2.6	1
71	Inheritance of a schizophrenia-like deficit in auditory gating fits a one gene model in inbred mouse strains. Schizophrenia Research, 1997, 24, 60.	2.0	0
72	Response to "Dizziness Genes― American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, n/a-n/a.	1.7	0

#	Article	IF	CITATIONS
73	0006 Novel Sleep Latency Testing In C57 Mice During Periods Of Nicotine Administration And Abstinence. Sleep, 2019, 42, A2-A3.	1.1	O
74	Nicotinic Receptors in Brain Diseases. Advances in Neurobiology, 2011, , 757-784.	1.8	0
75	Using Natural Genetic Variability in Nicotinic Receptor Genes to Understand the Function of Nicotinic Receptors. Neuromethods, 2016, , 97-117.	0.3	0