Chenghao Chuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1514543/publications.pdf

Version: 2024-02-01

34 papers

3,282 citations

304743 22 h-index 30 g-index

34 all docs

34 docs citations

34 times ranked 4519 citing authors

#	Article	IF	CITATIONS
1	Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2019, 141, 3977-3985.	13.7	1,071
2	Coexisting Singleâ€Atomic Fe and Ni Sites on Hierarchically Ordered Porous Carbon as a Highly Efficient ORR Electrocatalyst. Advanced Materials, 2020, 32, e2004670.	21.0	404
3	Controlling the Oxidation State of the Cu Electrode and Reaction Intermediates for Electrochemical CO ₂ Reduction to Ethylene. Journal of the American Chemical Society, 2020, 142, 2857-2867.	13.7	342
4	Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science, 2020, 370, 192-197.	12.6	336
5	Photoelectron Spectroscopy at the Graphene–Liquid Interface Reveals the Electronic Structure of an Electrodeposited Cobalt/Graphene Electrocatalyst. Angewandte Chemie - International Edition, 2015, 54, 14554-14558.	13.8	135
6	The Role of the Copper Oxidation State in the Electrocatalytic Reduction of CO ₂ into Valuable Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2019, 7, 1485-1492.	6.7	121
7	Hydrothermal Synthesis of Ruthenium Nanoparticles with a Metallic Core and a Ruthenium Carbide Shell for Low-Temperature Activation of CO ₂ to Methane. Journal of the American Chemical Society, 2019, 141, 19304-19311.	13.7	86
8	A Black Phosphorus–Graphite Composite Anode for Liâ€∤Naâ€∤K″on Batteries. Angewandte Chemie - International Edition, 2020, 59, 2318-2322.	13.8	84
9	Revealing the Active Phase of Copper during the Electroreduction of CO ₂ in Aqueous Electrolyte by Correlating <i>In Situ</i> X-ray Spectroscopy and <i>In Situ</i> Electron Microscopy. ACS Energy Letters, 2020, 5, 2106-2111.	17.4	84
10	Enhanced light–matter interaction of graphene–gold nanoparticle hybrid films for high-performance SERS detection. Journal of Materials Chemistry C, 2014, 2, 4683-4691.	5 . 5	81
11	Surface Electron-Hole Rich Species Active in the Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2021, 143, 12524-12534.	13.7	62
12	Crystallographicâ€Siteâ€Specific Structural Engineering Enables Extraordinary Electrochemical Performance of Highâ€Voltage LiNi _{0.5} Mn _{1.5} O ₄ Spinel Cathodes for Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2101413.	21.0	52
13	Synergy of Black Phosphorus–Graphite–Polyaniline-Based Ternary Composites for Stable High Reversible Capacity Na-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2019, 11, 16656-16661.	8.0	46
14	Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study. Scientific Reports, 2017, 7, 42235.	3.3	43
15	On the Activity/Selectivity and Phase Stability of Thermally Grown Copper Oxides during the Electrocatalytic Reduction of CO ₂ . ACS Catalysis, 2020, 10, 11510-11518.	11.2	39
16	Detecting trypsin at liquid crystal/aqueous interface by using surface-immobilized bovine serum albumin. Biosensors and Bioelectronics, 2016, 78, 213-220.	10.1	34
17	Molten salt assisted fabrication of Fe@FeSA-N-C oxygen electrocatalyst for high performance Zn-air battery. Journal of Energy Chemistry, 2021, 61, 612-621.	12.9	33
18	Role of the Metal Atom in a Carbonâ€Based Singleâ€Atom Electrocatalyst for LiS Redox Reactions. Small, 2022, 18, e2200395.	10.0	33

#	Article	IF	CITATIONS
19	A comparative study of electrochemical cells for in situ x-ray spectroscopies in the soft and tender x-ray range. Journal Physics D: Applied Physics, 2021, 54, 124003.	2.8	32
20	The Electro-Deposition/Dissolution of CuSO ₄ Aqueous Electrolyte Investigated by <i>In Situ</i> Soft X-ray Absorption Spectroscopy. Journal of Physical Chemistry B, 2018, 122, 780-787.	2.6	26
21	In-Situ XAS Investigation of the Effect of Electrochemical Reactions on the Structure of Graphene in Aqueous Electrolytes. Journal of the Electrochemical Society, 2013, 160, C445-C450.	2.9	23
22	X-ray spectroscopies studies of the 3d transition metal oxides and applications of photocatalysis. MRS Communications, 2017, 7, 53-66.	1.8	22
23	Creation of 3D Textured Graphene/Si Schottky Junction Photocathode for Enhanced Photoâ€Electrochemical Efficiency and Stability. Advanced Energy Materials, 2019, 9, 1901022.	19.5	21
24	A Black Phosphorus–Graphite Composite Anode for Liâ€∤Naâ€∤K″on Batteries. Angewandte Chemie, 2020, 13: 2338-2342.	² 2.0	21
25	Ultrasensitive NO ₂ Gas Sensors Based on Layered αâ€MoO ₃ Nanoribbons. Advanced Materials Technologies, 2022, 7, 2100579.	5.8	13
26	Modulating chemical composition and work function of suspended reduced graphene oxide membranes through electrochemical reduction. Carbon, 2021, 185, 410-418.	10.3	13
27	The rise of electrochemical NAPXPS operated in the soft X-ray regime exemplified by the oxygen evolution reaction on IrO _{<i>x</i>} electrocatalysts. Faraday Discussions, 2022, 236, 103-125.	3.2	11
28	Electrochemical Reactivity with Lithium of Spinel-type ZnFe _{2â€"<i>y</i>} Cr _{<i>y</i>} O ₄ (0 ≤i>y â‰⊉). Journal of Physical Chemistry C, 2013, 117, 24213-24223.	3.1	7
29	Water Splitting: Creation of 3D Textured Graphene/Si Schottky Junction Photocathode for Enhanced Photoâ€Electrochemical Efficiency and Stability (Adv. Energy Mater. 29/2019). Advanced Energy Materials, 2019, 9, 1970115.	19.5	4
30	Oxidation Behavior Characterization of Zircaloy-4 Cladding with Different Hydrogen Concentrations at 500–800 °C in an Ambient Atmosphere. Materials, 2022, 15, 2997.	2.9	2
31	Electronic surface reconstruction of TiO2 nanocrystals revealed by resonant inelastic x-ray scattering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	1
32	SOFT X-RAY SPECTROSCOPY ON PHOTOCATALYSIS., 2018,, 343-360.		0
33	In situ X-ray Spectroscopy Investigation of the Cathodic Electroreduction of CO2 into Valuable Chemical Feedstocks onto Copper Based Catalysts. , 0, , .		O
34	In situ X-ray Spectroscopy Investigation of the Cathodic Electroreduction of CO2 into Valuable Chemical Feedstocks onto Copper Based Catalysts. , 0, , .		0