Yves Gibon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1514524/publications.pdf

Version: 2024-02-01

		19657	1	1308
140	19,770	61		136
papers	citations	h-index		g-index
143	143	143		19118
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant Journal, 2004, 37, 914-939.	5.7	3,184
2	GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics, 2005, 21, 1635-1638.	4.1	1,247
3	Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. Journal of Experimental Botany, 2011, 62, 1715-1729.	4.8	623
4	Sugars and Circadian Regulation Make Major Contributions to the Global Regulation of Diurnal Gene Expression in Arabidopsis Â. Plant Cell, 2005, 17, 3257-3281.	6.6	608
5	Extension of the Visualization Tool MapMan to Allow Statistical Analysis of Arrays, Display of Coresponding Genes, and Comparison with Known Responses. Plant Physiology, 2005, 138, 1195-1204.	4.8	576
6	Steps towards an integrated view of nitrogen metabolism. Journal of Experimental Botany, 2002, 53, 959-970.	4.8	549
7	Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant, Cell and Environment, 2007, 30, 85-112.	5.7	533
8	Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochemical Journal, 2006, 397, 139-148.	3.7	518
9	A Robot-Based Platform to Measure Multiple Enzyme Activities in Arabidopsis Using a Set of Cycling Assays: Comparison of Changes of Enzyme Activities and Transcript Levels during Diurnal Cycles and in Prolonged Darkness[W]. Plant Cell, 2004, 16, 3304-3325.	6.6	489
10	Starch as a major integrator in the regulation of plant growth. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10348-10353.	7.1	467
11	Starch Synthesis in Potato Tubers Is Regulated by Post-Translational Redox Modification of ADP-Glucose Pyrophosphorylase. Plant Cell, 2002, 14, 2191-2213.	6.6	383
12	ADP-Glucose Pyrophosphorylase Is Activated by Posttranslational Redox-Modification in Response to Light and to Sugars in Leaves of Arabidopsis and Other Plant Species Â. Plant Physiology, 2003, 133, 838-849.	4.8	381
13	Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and post-translational activation of ADP-glucose pyrophosphorylase in the following light period. Plant Journal, 2004, 39, 847-862.	5.7	378
14	Arabidopsis Plants Acclimate to Water Deficit at Low Cost through Changes of Carbon Usage: An Integrated Perspective Using Growth, Metabolite, Enzyme, and Gene Expression Analysis Â. Plant Physiology, 2010, 154, 357-372.	4.8	374
15	Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when <i>Arabidopsis</i> is grown in very short photoperiods. Plant, Cell and Environment, 2009, 32, 859-874.	5.7	312
16	PageMan: An interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. BMC Bioinformatics, 2006, 7, 535.	2.6	309
17	Global Transcript Levels Respond to Small Changes of the Carbon Status during Progressive Exhaustion of Carbohydrates in Arabidopsis Rosettes Â. Plant Physiology, 2008, 146, 1834-1861.	4.8	306
18	Integration of metabolite with transcript and enzyme activity profiling during diurnal cycles in Arabidopsis rosettes. Genome Biology, 2006, 7, R76.	9.6	304

#	Article	IF	CITATIONS
19	Deficiency of mitochondrial fumarase activity in tomato plants impairs photosynthesis via an effect on stomatal function. Plant Journal, 2007, 50, 1093-1106.	5.7	294
20	Multilevel Analysis of Primary Metabolism Provides New Insights into the Role of Potassium Nutrition for Glycolysis and Nitrogen Assimilation in Arabidopsis Roots Â. Plant Physiology, 2009, 150, 772-785.	4.8	293
21	Ribosome and transcript copy numbers, polysome occupancy and enzyme dynamics in <i>Arabidopsis</i> . Molecular Systems Biology, 2009, 5, 314.	7.2	276
22	Temporal responses of transcripts, enzyme activities and metabolites after adding sucrose to carbon-deprived Arabidopsis seedlings. Plant Journal, 2007, 49, 463-491.	5.7	272
23	Variation of Enzyme Activities and Metabolite Levels in 24 Arabidopsis Accessions Growing in Carbon-Limited Conditions. Plant Physiology, 2006, 142, 1574-1588.	4.8	270
24	SIARF4, an Auxin Response Factor Involved in the Control of Sugar Metabolism during Tomato Fruit Development Â. Plant Physiology, 2013, 161, 1362-1374.	4.8	229
25	The art of growing plants for experimental purposes: a practical guide for the plant biologist. Functional Plant Biology, 2012, 39, 821.	2.1	217
26	Reduced Expression of Aconitase Results in an Enhanced Rate of Photosynthesis and Marked Shifts in Carbon Partitioning in Illuminated Leaves of Wild Species Tomato. Plant Physiology, 2003, 133, 1322-1335.	4.8	210
27	Metabolite profiling in plant biology: platforms and destinations. Genome Biology, 2004, 5, 109.	9.6	205
28	Adjustment of growth and central metabolism to a mild but sustained nitrogenâ€limitation in <i>Arabidopsis</i> . Plant, Cell and Environment, 2009, 32, 300-318.	5.7	201
29	Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in ⟨i⟩Arabidopsis⟨ i⟩ rosettes to a progressive decrease of temperature in the nonâ€freezing range. Plant, Cell and Environment, 2008, 31, 518-547.	5.7	191
30	Increased C availability at elevated carbon dioxide concentration improves N assimilation in a legume. Plant, Cell and Environment, 2006, 29, 1651-1658.	5.7	172
31	Association Mapping across Numerous Traits Reveals Patterns of Functional Variation in Maize. PLoS Genetics, 2014, 10, e1004845.	3.5	171
32	Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system. Plant Journal, 2002, 30, 221-235.	5.7	170
33	Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology, 2015, 35, tpv073.	3.1	163
34	Stress-Induced GSK3 Regulates the Redox Stress Response by Phosphorylating Glucose-6-Phosphate Dehydrogenase in <i>Arabidopsis</i> Plant Cell, 2012, 24, 3380-3392.	6.6	151
35	Arabidopsis has a cytosolic fumarase required for the massive allocation of photosynthate into fumaric acid and for rapid plant growth on high nitrogen. Plant Journal, 2010, 62, 785-795.	5.7	148
36	Characterization of a NADH-Dependent Glutamate Dehydrogenase Mutant of <i>Arabidopsis</i> Demonstrates the Key Role of this Enzyme in Root Carbon and Nitrogen Metabolism. Plant Cell, 2012, 24, 4044-4065.	6.6	134

#	Article	IF	CITATIONS
37	Cycling Assay for Nicotinamide Adenine Dinucleotides: NaCl Precipitation and Ethanol Solubilization of the Reduced Tetrazolium. Analytical Biochemistry, 1997, 251, 153-157.	2.4	131
38	Network Analysis of Enzyme Activities and Metabolite Levels and Their Relationship to Biomass in a Large Panel of <i>Arabidopsis </i> I > Accessions Â. Plant Cell, 2010, 22, 2872-2893.	6.6	131
39	Get the Balance Right: ROS Homeostasis and Redox Signalling in Fruit. Frontiers in Plant Science, 2019, 10, 1091.	3.6	127
40	Remarkable Reproducibility of Enzyme Activity Profiles in Tomato Fruits Grown under Contrasting Environments Provides a Roadmap for Studies of Fruit Metabolism Â. Plant Physiology, 2014, 164, 1204-1221.	4.8	119
41	Extensive metabolic crossâ€ŧalk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytologist, 2011, 190, 683-696.	7.3	111
42	GC-EI-TOF-MS analysis of in vivo carbon-partitioning into soluble metabolite pools of higher plants by monitoring isotope dilution after 13CO2 labelling. Phytochemistry, 2007, 68, 2258-2272.	2.9	105
43	The enigmatic contribution of mitochondrial function in photosynthesis. Journal of Experimental Botany, 2007, 59, 1675-1684.	4.8	104
44	Model-Assisted Analysis of Sugar Metabolism throughout Tomato Fruit Development Reveals Enzyme and Carrier Properties in Relation to Vacuole Expansion. Plant Cell, 2014, 26, 3224-3242.	6.6	103
45	Metabolite Profiling and Integrative Modeling Reveal Metabolic Constraints for Carbon Partitioning under Nitrogen Starvation in the Green Algae Haematococcus pluvialis. Journal of Biological Chemistry, 2014, 289, 30387-30403.	3.4	103
46	Does elevated atmospheric [CO2] alter diurnal C uptake and the balance of C and N metabolites in growing and fully expanded soybean leaves?. Journal of Experimental Botany, 2006, 58, 579-591.	4.8	102
47	Enzyme Activity Profiles during Fruit Development in Tomato Cultivars and <i>Solanum pennellii < /i>ÂÂÂ. Plant Physiology, 2010, 153, 80-98.</i>	4.8	92
48	Multilevel genomics analysis of carbon signalling during low carbon availability: coordinating the supply and utilisation of carbon in a fluctuating environment. Functional Plant Biology, 2007, 34, 526.	2.1	91
49	Integrative analyses of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana. Genome Biology, 2008, 9, R129.	9.6	90
50	Fortune telling: metabolic markers of plant performance. Metabolomics, 2016, 12, 158.	3.0	89
51	Impact of the Carbon and Nitrogen Supply on Relationships and Connectivity between Metabolism and Biomass in a Broad Panel of Arabidopsis Accessions Â. Plant Physiology, 2013, 162, 347-363.	4.8	87
52	Description and applications of a rapid and sensitive non-radioactive microplate-based assay for maximum and initial activity of D-ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant, Cell and Environment, 2007, 30, 1163-1175.	5.7	82
53	Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios. BMC Plant Biology, 2014, 14, 336.	3.6	80
54	Genome-Wide Association of Carbon and Nitrogen Metabolism in the Maize Nested Association Mapping Population. Plant Physiology, 2015, 168, 575-583.	4.8	80

#	Article	IF	Citations
55	Putting primary metabolism into perspective to obtain better fruits. Annals of Botany, 2018, 122, 1-21.	2.9	77
56	Overexpression of Plastid Transketolase in Tobacco Results in a Thiamine Auxotrophic Phenotype. Plant Cell, 2015, 27, 432-447.	6.6	76
57	Modelling central metabolic fluxes by constraintâ€based optimization reveals metabolic reprogramming of developing <i>Solanum lycopersicum</i> (tomato) fruit. Plant Journal, 2015, 81, 24-39.	5.7	76
58	Mutagenesis of cysteine 81 prevents dimerization of the APS1 subunit of ADPâ€glucose pyrophosphorylase and alters diurnal starch turnover in <i>Arabidopsis thaliana</i> leaves. Plant Journal, 2012, 70, 231-242.	5.7	75
59	Post-Flowering Nitrate Uptake in Wheat Is Controlled by N Status at Flowering, with a Putative Major Role of Root Nitrate Transporter NRT2.1. PLoS ONE, 2015, 10, e0120291.	2.5	75
60	Why measure enzyme activities in the era of systems biology?. Trends in Plant Science, 2014, 19, 256-265.	8.8	73
61	Respiration climacteric in tomato fruits elucidated by constraintâ€based modelling. New Phytologist, 2017, 213, 1726-1739.	7.3	67
62	A Single-Step Purification for Glycine Betaine Determination in Plant Extracts by Isocratic HPLC. Journal of Agricultural and Food Chemistry, 1999, 47, 3718-3722.	5.2	65
63	Metabolomic profiling in tomato reveals diel compositional changes in fruit affected by source–sink relationships. Journal of Experimental Botany, 2015, 66, 3391-3404.	4.8	62
64	Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics, 2015, 16, 440.	2.8	62
65	A fluorometric assay for trehalose in the picomole range. Plant Methods, 2013, 9, 21.	4.3	59
66	Fine Quantitative Trait Loci Mapping of Carbon and Nitrogen Metabolism Enzyme Activities and Seedling Biomass in the Maize IBM Mapping Population A Â. Plant Physiology, 2010, 154, 1753-1765.	4.8	58
67	Resolving the Role of Plant Glutamate Dehydrogenase: II. Physiological Characterization of Plants Overexpressing the Two Enzyme Subunits Individually or Simultaneously. Plant and Cell Physiology, 2013, 54, 1635-1647.	3.1	57
68	Transcriptional and metabolic alternations rebalance wheat grain storage protein accumulation under variable nitrogen and sulfur supply. Plant Journal, 2015, 83, 326-343.	5.7	57
69	Exploiting the Genetic Diversity of Maize Using a Combined Metabolomic, Enzyme Activity Profiling, and Metabolic Modeling Approach to Link Leaf Physiology to Kernel Yield. Plant Cell, 2017, 29, 919-943.	6.6	57
70	Impacts of Paraburkholderia phytofirmans Strain PsJN on Tomato (Lycopersicon esculentum L.) Under High Temperature. Frontiers in Plant Science, 2018, 9, 1397.	3.6	56
71	Mitochondrial metabolism supports resistance to IDH mutant inhibitors in acute myeloid leukemia. Journal of Experimental Medicine, 2021, 218, .	8.5	56
72	Absence of Symbiotic Leghemoglobins Alters Bacteroid and Plant Cell Differentiation During Development of <i>Lotus japonicus (i) Root Nodules. Molecular Plant-Microbe Interactions, 2009, 22, 800-808.</i>	2.6	55

#	Article	IF	Citations
73	Proline accumulation in canola leaf discs subjected to osmotic stress is related to the loss of chlorophylls and to the decrease of mitochondrial activity. Physiologia Plantarum, 2000, 110, 469-476.	5.2	50
74	The intrinsically disordered protein LEA7 from Arabidopsis thaliana protects the isolated enzyme lactate dehydrogenase and enzymes in a soluble leaf proteome during freezing and drying. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1517-1525.	2.3	50
75	A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biology, 2016, 16, 154.	3.6	48
76	Identification and Characterisation of the \hat{l}_{\pm} and \hat{l}_{2} Subunits of Succinyl CoA Ligase of Tomato. Plant Molecular Biology, 2005, 59, 781-791.	3.9	46
77	Is change in ovary carbon status a cause or a consequence of maize ovary abortion in water deficit during flowering?. Plant Physiology, 2016, 171, pp.01130.2015.	4.8	46
78	High-throughput plant phenotyping: a role for metabolomics?. Trends in Plant Science, 2022, 27, 549-563.	8.8	44
79	Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions. PLoS ONE, 2018, 13, e0190094.	2.5	43
80	Xeml Lab: a tool that supports the design of experiments at a graphical interface and generates computerâ€readable metadata files, which capture information about genotypes, growth conditions, environmental perturbations and sampling strategy. Plant, Cell and Environment, 2009, 32, 1185-1200.	5.7	42
81	Constraint-Based Modeling Highlights Cell Energy, Redox Status and α-Ketoglutarate Availability as Metabolic Drivers for Anthocyanin Accumulation in Grape Cells Under Nitrogen Limitation. Frontiers in Plant Science, 2018, 9, 421.	3.6	42
82	Bread Wheat (Triticum aestivum L.) Grain Protein Concentration Is Related to Early Post-Flowering Nitrate Uptake under Putative Control of Plant Satiety Level. PLoS ONE, 2016, 11, e0149668.	2.5	37
83	Identification of Enzyme Activity Quantitative Trait Loci in a Solanum lycopersicum × Solanum pennellii Introgression Line Population Â. Plant Physiology, 2011, 157, 998-1014.	4.8	36
84	Dissection of the molecular bases of genotype x environment interactions: a study of phenotypic plasticity of Saccharomyces cerevisiae in grape juices. BMC Genomics, 2018, 19, 772.	2.8	36
85	Biomass composition explains fruit relative growth rate and discriminates climacteric from non-climacteric species. Journal of Experimental Botany, 2020, 71, 5823-5836.	4.8	35
86	Fruit setting rewires central metabolism via gibberellin cascades. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23970-23981.	7.1	34
87	Integrating proteomics and enzymatic profiling to decipher seed metabolism affected by temperature in seed dormancy and germination. Plant Science, 2018, 269, 118-125.	3.6	33
88	Modeling Protein Destiny in Developing Fruit. Plant Physiology, 2019, 180, 1709-1724.	4.8	33
89	An assessment of the physiological properties of the so-called compatible solutes using in vitro experiments with leaf discs. Plant Physiology and Biochemistry, 2003, 41, 657-666.	5.8	32
90	QTL Analyses in Multiple Populations Employed for the Fine Mapping and Identification of Candidate Genes at a Locus Affecting Sugar Accumulation in Melon (Cucumis melo L.). Frontiers in Plant Science, 2017, 8, 1679.	3.6	32

#	Article	IF	Citations
91	Maize metabolome and proteome responses to controlled cold stress partly mimic earlyâ€sowing effects in the field and differ from those of Arabidopsis. Plant, Cell and Environment, 2021, 44, 1504-1521.	5.7	32
92	Genetic Analysis of Central Carbon Metabolism Unveils an Amino Acid Substitution That Alters Maize NAD-Dependent Isocitrate Dehydrogenase Activity. PLoS ONE, 2010, 5, e9991.	2.5	30
93	Overproduction of ascorbic acid impairs pollen fertility in tomato. Journal of Experimental Botany, 2021, 72, 3091-3107.	4.8	30
94	Enzyme Kinetics: Theory and Practice. , 2009, , 71-103.		30
95	Silencing of the tomato Sugar Partitioning Affecting protein (<scp>SPA</scp>) modifies sink strength through a shift in leaf sugar metabolism. Plant Journal, 2014, 77, 676-687.	5.7	28
96	Metabolomics to Exploit the Primed Immune System of Tomato Fruit. Metabolites, 2020, 10, 96.	2.9	28
97	Bryophyte gasâ€exchange dynamics along varying hydration status reveal a significant carbonyl sulphide (COS) sink in the dark and COS source in the light. New Phytologist, 2017, 215, 965-976.	7.3	27
98	1H-NMR metabolomic profiling reveals a distinct metabolic recovery response in shoots and roots of temporarily drought-stressed sugar beets. PLoS ONE, 2018, 13, e0196102.	2.5	27
99	Omeprazole Treatment Enhances Nitrogen Use Efficiency Through Increased Nitrogen Uptake and Assimilation in Corn. Frontiers in Plant Science, 2019, 10, 1507.	3.6	26
100	Metabolic studies in plant organs: don't forget dilution by growth. Frontiers in Plant Science, 2014, 5, 85.	3.6	25
101	Grapevines under drought do not express esca leaf symptoms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	25
102	Expression of a yeast acetyl CoA hydrolase in the mitochondrion. Plant Molecular Biology, 2004, 55, 645-662.	3.9	24
103	The role of potassium on maize leaf carbon exportation under drought condition. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	24
104	Use of TILLING and robotised enzyme assays to generate an allelic series of Arabidopsis thaliana mutants with altered ADP-glucose pyrophosphorylase activity. Journal of Plant Physiology, 2011, 168, 1395-1405.	3.5	23
105	Regulation of carbon metabolism in two maize sister lines contrasted for chilling tolerance. Journal of Experimental Botany, 2020, 71, 356-369.	4.8	22
106	Deciphering genetic diversity and inheritance of tomato fruit weight and composition through a systems biology approach. Journal of Experimental Botany, 2013, 64, 5737-5752.	4.8	20
107	Correlation-Based Network Analysis of Metabolite and Enzyme Profiles Reveals a Role of Citrate Biosynthesis in Modulating N and C Metabolism in Zea mays. Frontiers in Plant Science, 2016, 7, 1022.	3.6	20
108	Regulation of Pyridine Nucleotide Metabolism During Tomato Fruit Development Through Transcript and Protein Profiling. Frontiers in Plant Science, 2019, 10, 1201.	3.6	20

#	Article	IF	CITATIONS
109	Omics Data Reveal Putative Regulators of Einkorn Grain Protein Composition under Sulfur Deficiency. Plant Physiology, 2020, 183, 501-516.	4.8	20
110	Combined Alternaria dauci infection and water stresses impact carotenoid content of carrot leaves and roots. Environmental and Experimental Botany, 2017, 143, 125-134.	4.2	19
111	Metabolomic characterization of sunflower leaf allows discriminating genotype groups or stress levels with a minimal set of metabolic markers. Metabolomics, 2019, 15, 56.	3.0	17
112	Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience. New Phytologist, 2022, 234, 1614-1628.	7.3	17
113	Interaction between exogenous glycine betaine and the photorespiratory pathway in canola leaf discs. Physiologia Plantarum, 2002, 116, 460-467.	5.2	16
114	Adenine Nucleotide and Nicotinamide Adenine Dinucleotide Measurements in Plants. Current Protocols in Plant Biology, 2020, 5, e20115.	2.8	16
115	Metabotyping of 30 maize hybrids under early-sowing conditions reveals potential marker-metabolites for breeding. Metabolomics, 2018, 14, 132.	3.0	15
116	Aspects of Experimental Design for Plant Metabolomics Experiments and Guidelines for Growth of Plant Material. Methods in Molecular Biology, 2011, 860, 13-30.	0.9	15
117	High-throughput functional assessment of polysaccharide-active enzymes using matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry as exemplified on plant cell wall polysaccharides. Analytical Biochemistry, 2008, 373, 9-17.	2.4	14
118	Model-assisted comparison of sugar accumulation patterns in ten fleshy fruits highlights differences between herbaceous and woody species. Annals of Botany, 2020, 126, 455-470.	2.9	13
119	Modelling predicts tomatoes can be bigger and sweeter if biophysical factors and transmembrane transports are fineâ€tuned during fruit development. New Phytologist, 2021, 230, 1489-1502.	7.3	12
120	Central Metabolism Is Tuned to the Availability of Oxygen in Developing Melon Fruit. Frontiers in Plant Science, 2019, 10, 594.	3.6	9
121	Ammonium supply induces differential metabolic adaptive responses in tomato according to leaf phenological stage. Journal of Experimental Botany, 2021, 72, 3185-3199.	4.8	9
122	Overexpression of thioredoxin m in chloroplasts alters carbon and nitrogen partitioning in tobacco. Journal of Experimental Botany, 2021, 72, 4949-4964.	4.8	9
123	Measurement of Enzyme Activities and Optimization of Continuous and Discontinuous Assays. Current Protocols in Plant Biology, 2016, 1, 247-262.	2.8	8
124	Comparative metabolomics and glycolysis enzyme profiling of embryogenic and nonembryogenic grape cells. FEBS Open Bio, 2018, 8, 784-798.	2.3	8
125	High-Throughput Biochemical Phenotyping for Plants. Advances in Botanical Research, 2013, , 407-439.	1.1	7
126	Plant metabolomics and breeding. Advances in Botanical Research, 2021, , 207-235.	1.1	7

#	Article	IF	CITATIONS
127	Measurement of Tricarboxylic Acid Cycle Enzyme Activities in Plants. Methods in Molecular Biology, 2017, 1670, 167-182.	0.9	6
128	Developmental metabolomics to decipher and improve fleshy fruit quality. Advances in Botanical Research, 2021, 98, 3-34.	1.1	6
129	The NAD Kinase Slr0400 Functions as a Growth Repressor in <i>Synechocystis</i> sp. PCC 6803. Plant and Cell Physiology, 2021, 62, 668-677.	3.1	6
130	Making experimental data tables in the life sciences more FAIR: a pragmatic approach. GigaScience, 2020, 9, .	6.4	6
131	Biochemical characterization of the primary metabolism and antioxidant defense systems of acidic and acidless citrus genotypes during the major stages of fruit growth. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	5
132	Untargeted Analysis of Semipolar Compounds by LC-MS and Targeted Analysis of Fatty Acids by GC-MS/GC-FID: From Plant Cultivation to Extract Preparation. Methods in Molecular Biology, 2018, 1778, 101-124.	0.9	5
133	From fruit growth to ripening in plantain: a careful balance between carbohydrate synthesis and breakdown. Journal of Experimental Botany, 2022, 73, 4832-4849.	4.8	5
134	The Evolution of Leaf Function during Development Is Reflected in Profound Changes in the Metabolic Composition of the Vacuole. Metabolites, 2021, 11, 848.	2.9	4
135	Grape ASR Regulates Glucose Transport, Metabolism and Signaling. International Journal of Molecular Sciences, 2022, 23, 6194.	4.1	4
136	Why bring postâ€genomics into the phosphorusâ€impoverished bush?. Plant, Cell and Environment, 2014, 37, 1273-1275.	5.7	3
137	Leaf metabolomic data of eight sunflower lines and their sixteen hybrids under water deficit. OCL - Oilseeds and Fats, Crops and Lipids, 2021, 28, 42.	1.4	2
138	Analysis of Enzyme Activities. Methods in Molecular Biology, 2014, 1090, 249-259.	0.9	2
139	Metabolic Profile Discriminates and Predicts Arabidopsis Susceptibility to Virus under Field Conditions. Metabolites, 2021, 11, 230.	2.9	1
140	MetaPhenomics: quantifying the many ways plants respond to their abiotic environment, using light intensity as an example. Plant and Soil, 2022, 476, 421-454.	3.7	1