Patrã-cia Albuquerque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1514380/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hinge influences in murine IgG binding to <i>Cryptococcus neoformans</i> capsule. Immunology, 2022, 165, 110-121.	2.0	3
2	Thromboelastometry demonstrates endogenous coagulation activation in nonsevere and severe COVID-19 patients and has applicability as a decision algorithm for intervention. PLoS ONE, 2022, 17, e0262600.	1.1	14
3	Faster Cryptococcus Melanization Increases Virulence in Experimental and Human Cryptococcosis. Journal of Fungi (Basel, Switzerland), 2022, 8, 393.	1.5	6
4	Neuroprotective effects on microglia and insights into the structure–activity relationship of an antioxidant peptide isolated from <i>Pelophylax perezi</i> . Journal of Cellular and Molecular Medicine, 2022, 26, 2793-2807.	1.6	7
5	<i>In vitro</i> antifungal activity of pelgipeptins against human pathogenic fungi and <i>Candida albicans</i> biofilms. AIMS Microbiology, 2021, 7, 28-39.	1.0	4
6	Base Excision Repair AP-Endonucleases-Like Genes Modulate DNA Damage Response and Virulence of the Human Pathogen Cryptococcus neoformans. Journal of Fungi (Basel, Switzerland), 2021, 7, 133.	1.5	2
7	Molecular and Cellular Biomarkers of COVID-19 Prognosis: Protocol for the Prospective Cohort TARGET Study. JMIR Research Protocols, 2021, 10, e24211.	0.5	3
8	Cryptococcal Virulence in Humans: Learning From Translational Studies With Clinical Isolates. Frontiers in Cellular and Infection Microbiology, 2021, 11, 657502.	1.8	10
9	Acetylated cashew gum and fucan for incorporation of lycopene rich extract from red guava (Psidium) Tj ETQq1 1 Biological Macromolecules, 2021, 191, 1026-1037.	0.784314 3.6	rgBT /Over 9
10	Quaternization of angico gum and evaluation of anti-staphylococcal effect and toxicity of their derivatives. International Journal of Biological Macromolecules, 2020, 150, 1175-1183.	3.6	16
11	Paracoccidioides HSP90 Can Be Found in the Cell Surface and Is a Target for Antibodies with Therapeutic Potential. Journal of Fungi (Basel, Switzerland), 2020, 6, 193.	1.5	4
12	Transcriptional Remodeling Patterns in Murine Dendritic Cells Infected with Paracoccidioides brasiliensis: More Is Not Necessarily Better. Journal of Fungi (Basel, Switzerland), 2020, 6, 311.	1.5	2
13	A novel <i>Sporothrix brasiliensis</i> genomic variant in Midwestern Brazil: evidence for an older and wider sporotrichosis epidemic. Emerging Microbes and Infections, 2020, 9, 2515-2525.	3.0	21
14	Laccase Affects the Rate of Cryptococcus neoformans Nonlytic Exocytosis from Macrophages. MBio, 2020, 11, .	1.8	15
15	Cryptococcus neoformans Secretes Small Molecules That Inhibit IL-1Î ² Inflammasome-Dependent Secretion. Mediators of Inflammation, 2020, 2020, 1-20.	1.4	12
16	Erg6 affects membrane composition and virulence of the human fungal pathogen Cryptococcus neoformans. Fungal Genetics and Biology, 2020, 140, 103368.	0.9	28
17	Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Scientific Reports, 2020, 10, 10327.	1.6	41
18	The Antioxidant Peptide Salamandrin-I: First Bioactive Peptide Identified from Skin Secretion of Salamandra Genus (Salamandra salamandra). Biomolecules, 2020, 10, 512.	1.8	22

#	Article	IF	CITATIONS
19	A hidden battle in the dirt: Soil amoebae interactions with Paracoccidioides spp. PLoS Neglected Tropical Diseases, 2019, 13, e0007742.	1.3	30
20	The â€~Amoeboid Predator-Fungal Animal Virulence' Hypothesis. Journal of Fungi (Basel, Switzerland), 2019, 5, 10.	1.5	63
21	Unravelling the interactions of the environmental host <i>Acanthamoeba castellanii</i> with fungi through the recognition by mannoseâ€binding proteins. Cellular Microbiology, 2019, 21, e13066.	1.1	22
22	Silver nanoparticle stabilized by hydrolyzed collagen and natural polymers: Synthesis, characterization and antibacterial-antifungal evaluation. International Journal of Biological Macromolecules, 2019, 135, 808-814.	3.6	39
23	Antifungal and anti-inflammatory potential of eschweilenol C-rich fraction derived from Terminalia fagifolia Mart. Journal of Ethnopharmacology, 2019, 240, 111941.	2.0	14
24	Integrin β1 Promotes the Interaction of Murine IgG3 with Effector Cells. Journal of Immunology, 2019, 202, 2782-2794.	0.4	10
25	Antifungal drugs: New insights in research & development. , 2019, 195, 21-38.		102
26	A hidden battle in the dirt: Soil amoebae interactions with Paracoccidioides spp. , 2019, 13, e0007742.		0
27	A hidden battle in the dirt: Soil amoebae interactions with Paracoccidioides spp. , 2019, 13, e0007742.		Ο
28	A hidden battle in the dirt: Soil amoebae interactions with Paracoccidioides spp. , 2019, 13, e0007742.		0
29	A hidden battle in the dirt: Soil amoebae interactions with Paracoccidioides spp. , 2019, 13, e0007742.		0
30	Broth Microdilution In Vitro Screening: An Easy and Fast Method to Detect New Antifungal Compounds. Journal of Visualized Experiments, 2018, , .	0.2	7
31	A glucuronoxylomannan-like glycan produced by Trichosporon mucoides. Fungal Genetics and Biology, 2018, 121, 46-55.	0.9	9
32	A Wor1-Like Transcription Factor Is Essential for Virulence of Cryptococcus neoformans. Frontiers in Cellular and Infection Microbiology, 2018, 8, 369.	1.8	3
33	Opsonin-free, real-time imaging of <i>Cryptococcus neoformans</i> capsule during budding. Virulence, 2018, 9, 1483-1488.	1.8	15
34	An Immunomodulatory Peptide Confers Protection in an Experimental Candidemia Murine Model. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	22
35	Host Autophagy in Antifungal Immunity. , 2016, , 317-330.		1
36	Activity of Scorpion Venom-Derived Antifungal Peptides against Planktonic Cells of Candida spp. and Cryptococcus neoformans and Candida albicans Biofilms. Frontiers in Microbiology, 2016, 7, 1844.	1.5	41

PatrÃcia Albuquerque

#	Article	IF	CITATIONS
37	A method for microbial decontamination of Acanthamoeba cultures using the peritoneal cavity of mice. Asian Pacific Journal of Tropical Biomedicine, 2015, 5, 796-800.	0.5	2
38	Histone deacetylases inhibitors effects on <i>Cryptococcus neoformans</i> major virulence phenotypes. Virulence, 2015, 6, 618-630.	1.8	38
39	A Role for LHC1 in Higher Order Structure and Complement Binding of the Cryptococcus neoformans Capsule. PLoS Pathogens, 2014, 10, e1004037.	2.1	28
40	Quorum Sensing-Mediated, Cell Density-Dependent Regulation of Growth and Virulence in Cryptococcus neoformans. MBio, 2014, 5, e00986-13.	1.8	87
41	Comparative genomics of the major fungal agents of human and animal Sporotrichosis: Sporothrix schenckii and Sporothrix brasiliensis. BMC Genomics, 2014, 15, 943.	1.2	121
42	Transcriptomics of the Host–Pathogen Interaction in Paracoccidioidomycosis. , 2014, , 265-287.		2
43	The Transcriptional Response of Cryptococcus neoformans to Ingestion by Acanthamoeba castellanii and Macrophages Provides Insights into the Evolutionary Adaptation to the Mammalian Host. Eukaryotic Cell, 2013, 12, 761-774.	3.4	77
44	Antibiotic development challenges: the various mechanisms of action of antimicrobial peptides and of bacterial resistance. Frontiers in Microbiology, 2013, 4, 353.	1.5	399
45	Quorum sensing in fungi – a review. Medical Mycology, 2012, 50, 337-345.	0.3	334
46	Macrophage Autophagy in Immunity to Cryptococcus neoformans and Candida albicans. Infection and Immunity, 2012, 80, 3065-3076.	1.0	108
47	Nonlytic Exocytosis of Cryptococcus neoformans from Macrophages Occurs <i>In Vivo</i> and Is Influenced by Phagosomal pH. MBio, 2011, 2, .	1.8	113
48	Phospholipids Trigger Cryptococcus neoformans Capsular Enlargement during Interactions with Amoebae and Macrophages. PLoS Pathogens, 2011, 7, e1002047.	2.1	103
49	The stress responsive and morphologically regulated hsp90 gene from Paracoccidioides brasiliensis is essential to cell viability. BMC Microbiology, 2008, 8, 158.	1.3	33
50	Transcriptional Profiles of the Human Pathogenic Fungus Paracoccidioides brasiliensis in Mycelium and Yeast Cells. Journal of Biological Chemistry, 2005, 280, 24706-24714.	1.6	169
51	Pbhyd1 and Pbhyd2: two mycelium-specific hydrophobin genes from the dimorphic fungus Paracoccidioides brasiliensis. Fungal Genetics and Biology, 2004, 41, 510-520.	0.9	34
52	Transcriptome characterization of the dimorphic and pathogenic fungusParacoccidioides brasiliensisby EST analysis. Yeast, 2003, 20, 263-271.	0.8	74