Haihua Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1513939/publications.pdf

Version: 2024-02-01

97 papers	7,325 citations	43973 48 h-index	83 g-index
102	102	102	8752
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Biodegradable Polymer with Effective Nearâ€Infraredâ€II Absorption as a Photothermal Agent for Deep Tumor Therapy. Advanced Materials, 2022, 34, e2105976.	11.1	92
2	Biosafety chemistry and biosafety materials: A new perspective to solve biosafety problems. Biosafety and Health, 2022, 4, 15-22.	1.2	18
3	Targeting Cancer Metabolism Plasticity with JX06 Nanoparticles via Inhibiting PDK1 Combined with Metformin for Endometrial Cancer Patients with Diabetes. Advanced Science, 2022, 9, e2104472.	5.6	14
4	Degradable Pseudo Conjugated Polymer Nanoparticles with NIRâ€II Photothermal Effect and Cationic Quaternary Phosphonium Structural Bacteriostasis for Antiâ€Infection Therapy. Advanced Science, 2022, 9, e2200732.	5.6	46
5	Photoâ€Reduction with NIR Light of Nucleusâ€Targeting Pt ^{IV} Nanoparticles for Combined Tumorâ€Targeted Chemotherapy and Photodynamic Immunotherapy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	93
6	Biosafety materials: Ushering in a new era of infectious disease diagnosis and treatment with the CRISPR/Cas system. Biosafety and Health, 2022, 4, 70-78.	1.2	10
7	Boosting ferroptosis via abplatin(iv) for treatment of platinum-resistant recurrent ovarian cancer. Nano Today, 2022, 44, 101459.	6.2	17
8	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	4.2	85
9	Abplatin(IV) inhibited tumor growth on a patient derived cancer model of hepatocellular carcinoma and its comparative multi-omics study with cisplatin. Journal of Nanobiotechnology, 2022, 20, .	4.2	9
10	Engineering CpGâ€ASOâ€Ptâ€Loaded Macrophages (CAP@M) for Synergistic Chemoâ€∤Geneâ€∤Immunoâ€The Advanced Healthcare Materials, 2022, 11, .	rapy.	8
11	Targeting Bone Tumor and Subcellular Endoplasmic Reticulum via Near Infrared II Fluorescent Polymer for Photodynamicâ€Immunotherapy to Break the Stepâ€Reduction Delivery Dilemma. Advanced Science, 2022, 9, .	5.6	17
12	Light triggered release of a triple action porphyrin-cisplatin conjugate evokes stronger immunogenic cell death for chemotherapy, photodynamic therapy and cancer immunotherapy. Journal of Nanobiotechnology, 2022, 20, .	4.2	24
13	Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy. Biomaterials, 2021, 265, 120456.	5.7	146
14	Nanoparticle-based drug delivery systems with platinum drugs for overcoming cancer drug resistance. Journal of Materials Chemistry B, 2021, 9, 5173-5194.	2.9	42
15	UCNP@BSA@Ru nanoparticles with tumor-specific and NIR-triggered efficient PACT activity <i>in vivo</i> . Dalton Transactions, 2021, 50, 7715-7724.	1.6	7
16	Core Role of Hydrophobic Core of Polymeric Nanomicelle in Endosomal Escape of siRNA. Nano Letters, 2021, 21, 3680-3689.	4.5	58
17	Exploiting the acquired vulnerability of cisplatin-resistant tumors with a hypoxia-amplifying DNA repair–inhibiting (HYDRI) nanomedicine. Science Advances, 2021, 7, .	4.7	50
18	A Near-Infrared-II Polymer with Tandem Fluorophores Demonstrates Superior Biodegradability for Simultaneous Drug Tracking and Treatment Efficacy Feedback. ACS Nano, 2021, 15, 5428-5438.	7.3	79

#	Article	IF	Citations
19	A Systematic Strategy of Combinational Blow for Overcoming Cascade Drug Resistance via NIRâ€Lightâ€Triggered Hyperthermia. Advanced Materials, 2021, 33, e2100599.	11.1	78
20	Nanoparticle-mediated convection-enhanced delivery of a DNA intercalator to gliomas circumvents temozolomide resistance. Nature Biomedical Engineering, 2021, 5, 1048-1058.	11.6	96
21	Identification of SARS-CoV-2-against aptamer with high neutralization activity by blocking the RBD domain of spike protein 1. Signal Transduction and Targeted Therapy, 2021, 6, 227.	7.1	56
22	NIR-light triggered dual-cascade targeting core-shell nanoparticles enhanced photodynamic therapy and immunotherapy. Nano Today, 2021, 41, 101288.	6.2	55
23	Enhanced Chemodynamic Therapy and Chemotherapy via Delivery of a Dual Threat ArtePt and Iodoâ€Click Reaction Mediated Glutathione Consumption. Small Methods, 2021, 5, e2101047.	4.6	15
24	Near-Infrared Light Irradiation Induced Mild Hyperthermia Enhances Glutathione Depletion and DNA Interstrand Cross-Link Formation for Efficient Chemotherapy. ACS Nano, 2020, 14, 14831-14845.	7.3	67
25	Efficient hepatic delivery and protein expression enabled by optimized mRNA and ionizable lipid nanoparticle. Bioactive Materials, 2020, 5, 1053-1061.	8.6	49
26	Illuminating Platinum Transportation while Maximizing Therapeutic Efficacy by Gold Nanoclusters <i>via</i> Simultaneous Near-Infrared-I/II Imaging and Glutathione Scavenging. ACS Nano, 2020, 14, 13536-13547.	7.3	181
27	Microneedles loaded with anti-PD-1–cisplatin nanoparticles for synergistic cancer immuno-chemotherapy. Nanoscale, 2020, 12, 18885-18898.	2.8	67
28	Breaking the Intracellular Redox Balance with Diselenium Nanoparticles for Maximizing Chemotherapy Efficacy on Patient-Derived Xenograft Models. ACS Nano, 2020, 14, 16984-16996.	7.3	105
29	Biosafety materials: an emerging new research direction of materials science from the COVID-19 outbreak. Materials Chemistry Frontiers, 2020, 4, 1930-1953.	3.2	55
30	Engineering liposomal nanoparticles of cholesterol-tethered amphiphilic Pt(<scp>iv</scp>) prodrugs with prolonged circulation time in blood. Dalton Transactions, 2020, 49, 8107-8113.	1.6	10
31	Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine. Materials Science and Engineering C, 2020, 111, 110855.	3.8	36
32	The challenge and prospect of mRNA therapeutics landscape. Biotechnology Advances, 2020, 40, 107534.	6.0	221
33	Enhancing the chemotherapeutic efficacy of platinum prodrug nanoparticles and inhibiting cancer metastasis by targeting iron homeostasis. Nanoscale Horizons, 2020, 5, 999-1015.	4.1	25
34	A Nanobodyâ€Conjugated DNA Nanoplatform for Targeted Platinumâ€Drug Delivery. Angewandte Chemie - International Edition, 2019, 58, 14224-14228.	7.2	135
35	MnFe ₂ O ₄ -decorated large-pore mesoporous silica-coated upconversion nanoparticles for near-infrared light-induced and O ₂ self-sufficient photodynamic therapy. Nanoscale, 2019, 11, 14654-14667.	2.8	41
36	pH/redox sensitive nanoparticles with platinum(iv) prodrugs and doxorubicin enhance chemotherapy in ovarian cancer. RSC Advances, 2019, 9, 20513-20517.	1.7	14

#	Article	IF	CITATIONS
37	Cancer Cell Membraneâ€Coated Nanoparticles for Personalized Therapy in Patientâ€Derived Xenograft Models. Advanced Functional Materials, 2019, 29, 1905671.	7.8	125
38	Design of zwitterionic polyester based nano-carriers for platinum(iv) prodrug delivery. Polymer Chemistry, 2019, 10, 5353-5363.	1.9	9
39	Carboplatin prodrug conjugated Fe ₃ O ₄ nanoparticles for magnetically targeted drug delivery in ovarian cancer cells. Journal of Materials Chemistry B, 2019, 7, 433-442.	2.9	25
40	Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale, 2019, 11, 1475-1504.	2.8	134
41	Layerâ€byâ€layer nanoparticles for novel delivery of cisplatin and PARP inhibitors for platinumâ€based drug resistance therapy in ovarian cancer. Bioengineering and Translational Medicine, 2019, 4, e10131.	3.9	30
42	A spermine-conjugated lipophilic Pt(<scp>iv</scp>) prodrug designed to eliminate cancer stem cells in ovarian cancer. Chemical Communications, 2019, 55, 6106-6109.	2.2	20
43	RNAi therapeutic and its innovative biotechnological evolution. Biotechnology Advances, 2019, 37, 801-825.	6.0	196
44	A negatively charged Pt(<scp>iv</scp>) prodrug for electrostatic complexation with polymers to overcome cisplatin resistance. Journal of Materials Chemistry B, 2019, 7, 3346-3350.	2.9	27
45	A mitochondria targeting artesunate prodrug-loaded nanoparticle exerting anticancer activity via iron-mediated generation of the reactive oxygen species. Chemical Communications, 2019, 55, 4781-4784.	2.2	23
46	Evaluation of Polymer Nanoformulations in Hepatoma Therapy by Established Rodent Models. Theranostics, 2019, 9, 1426-1452.	4.6	53
47	Secreted Protein Acidic and Rich in Cysteine Mediated Biomimetic Delivery of Methotrexate by Albumin-Based Nanomedicines for Rheumatoid Arthritis Therapy. ACS Nano, 2019, 13, 5036-5048.	7.3	122
48	Recent advances in delivery of photosensitive metal-based drugs. Coordination Chemistry Reviews, 2019, 387, 154-179.	9.5	136
49	Electrospun polymer biomaterials. Progress in Polymer Science, 2019, 90, 1-34.	11.8	472
50	Dual Drug Backboned Shattering Polymeric Theranostic Nanomedicine for Synergistic Eradication of Patientâ€Derived Lung Cancer. Advanced Materials, 2018, 30, 1706220.	11.1	142
51	Fluorinated Acid‣abile Branched Hydroxylâ€Rich Nanosystems for Flexible and Robust Delivery of Plasmids. Small, 2018, 14, e1803061.	5.2	61
52	Sandwichâ€Like Fibers/Sponge Composite Combining Chemotherapy and Hemostasis for Efficient Postoperative Prevention of Tumor Recurrence and Metastasis. Advanced Materials, 2018, 30, e1803217.	11.1	129
53	Recent progress in polymer-based platinum drug delivery systems. Progress in Polymer Science, 2018, 87, 70-106.	11.8	144
54	Phenanthriplatin(<scp>iv</scp>) conjugated multifunctional up-converting nanoparticles for drug delivery and biomedical imaging. Journal of Materials Chemistry B, 2018, 6, 5059-5068.	2.9	36

#	Article	IF	CITATIONS
55	Tailoring Platinum(IV) Amphiphiles for Self-Targeting All-in-One Assemblies as Precise Multimodal Theranostic Nanomedicine. ACS Nano, 2018, 12, 7272-7281.	7.3	114
56	A Targeted and Stable Polymeric Nanoformulation Enhances Systemic Delivery of mRNA to Tumors. Molecular Therapy, 2017, 25, 92-101.	3.7	70
57	Enhanced Cisplatin Chemotherapy by Iron Oxide Nanocarrier-Mediated Generation of Highly Toxic Reactive Oxygen Species. Nano Letters, 2017, 17, 928-937.	4.5	548
58	Maximizing Synergistic Activity When Combining RNAi and Platinum-Based Anticancer Agents. Journal of the American Chemical Society, 2017, 139, 3033-3044.	6.6	74
59	Receptor and Microenvironment Dual-Recognizable Nanogel for Targeted Chemotherapy of Highly Metastatic Malignancy. Nano Letters, 2017, 17, 4526-4533.	4.5	127
60	Nanoparticle conjugates of a highly potent toxin enhance safety and circumvent platinum resistance in ovarian cancer. Nature Communications, 2017, 8, 2166.	5.8	71
61	Polymeric Nanostructure Compiled with Multifunctional Components To Exert Tumor-Targeted Delivery of Antiangiogenic Gene for Tumor Growth Suppression. ACS Applied Materials & amp; Interfaces, 2016, 8, 24404-24414.	4.0	7
62	A hybrid platinum drug dichloroacetate-platinum(II) overcomes cisplatin drug resistance through dual organelle targeting. Anti-Cancer Drugs, 2015, 26, 698-705.	0.7	20
63	Delivering a photosensitive transplatin prodrug to overcome cisplatin drug resistance. Chemical Communications, 2015, 51, 11493-11495.	2.2	53
64	Inorganic nanocarriers for platinum drug delivery. Materials Today, 2015, 18, 554-564.	8.3	122
65	Biodegradable polymer–platinum drug conjugates to overcome platinum drug resistance. RSC Advances, 2015, 5, 83343-83349.	1.7	18
66	Design and delivery of camplatin to overcome cisplatin drug resistance. Journal of Materials Chemistry B, 2015, 3, 176-179.	2.9	26
67	Nanoparticle delivery of photosensitive Pt(IV) drugs for circumventing cisplatin cellular pathway and on-demand drug release. Colloids and Surfaces B: Biointerfaces, 2014, 123, 734-741.	2.5	32
68	Nanoparticle mediated delivery of a GST inhibitor ethacrynic acid for sensitizing platinum based chemotherapy. RSC Advances, 2014, 4, 61124-61132.	1.7	17
69	Lactose targeting oxaliplatin prodrug loaded micelles for more effective chemotherapy of hepatocellular carcinoma. Journal of Materials Chemistry B, 2014, 2, 2097.	2.9	21
70	A biodegradable polymer platform for co-delivery of clinically relevant oxaliplatin and gemcitabine. Journal of Materials Chemistry B, 2014, 2, 6560-6570.	2.9	18
71	Photosensitive Pt(IV)–azide prodrug-loaded nanoparticles exhibit controlled drug release and enhanced efficacy in vivo. Journal of Controlled Release, 2014, 173, 11-17.	4.8	96
72	Synthesis of mesoporous silica nanoparticle–oxaliplatin conjugates for improved anticancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2014, 117, 75-81.	2.5	75

#	Article	IF	CITATIONS
73	Application of microwaveâ€essisted click chemistry in the preparation of functionalized copolymers for drug conjugation. Journal of Applied Polymer Science, 2013, 127, 3365-3373.	1.3	20
74	Multifunctional Pt(<scp>iv</scp>) pro-drug and its micellar platform: to kill two birds with one stone. Journal of Materials Chemistry B, 2013, 1, 762-772.	2.9	36
75	A Polymer–(Tandem Drugs) Conjugate for Enhanced Cancer Treatment. Advanced Healthcare Materials, 2013, 2, 822-827.	3.9	49
76	Micellar nanoparticle formation via electrostatic interactions for delivering multinuclear platinum(ii) drugs. Chemical Communications, 2013, 49, 4809.	2.2	40
77	In Vivo Multimodality Imaging and Cancer Therapy by Near-Infrared Light-Triggered <i>trans</i> -Platinum Pro-Drug-Conjugated Upconverison Nanoparticles. Journal of the American Chemical Society, 2013, 135, 18920-18929.	6.6	508
78	Rational Design of Multifunctional Upconversion Nanocrystals/Polymer Nanocomposites for Cisplatin (IV) Delivery and Biomedical Imaging. Advanced Materials, 2013, 25, 4898-4905.	11.1	127
79	Polymeric dinulcear platinum(ii) complex micelles for enhanced antitumor activity. Journal of Materials Chemistry B, 2013, 1, 744.	2.9	12
80	lodo-BODIPY: a visible-light-driven, highly efficient and photostable metal-free organic photocatalyst. RSC Advances, 2013, 3, 13417.	1.7	99
81	A cross-linked polymeric micellar delivery system for cisplatin(IV) complex. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83, 63-75.	2.0	29
82	Co-delivery of all-trans-retinoic-acid and cisplatin(iv) prodrug based on polymer–drug conjugates for enhanced efficacy and safety. Journal of Materials Chemistry, 2012, 22, 25453.	6.7	15
83	A dual-targeting hybrid platinum(iv) prodrug for enhancing efficacy. Chemical Communications, 2012, 48, 10730.	2.2	70
84	Layer-by-Layer Assembled Polypeptide Capsules for Platinum-Based Pro-Drug Delivery. Bioconjugate Chemistry, 2012, 23, 2335-2343.	1.8	36
85	Biological Characterization of Folate-Decorated Biodegradable Polymer–Platinum(II) Complex Micelles. Molecular Pharmaceutics, 2012, 9, 3200-3208.	2.3	31
86	Co-delivery of daunomycin and oxaliplatin by biodegradable polymers for safer and more efficacious combination therapy. Journal of Controlled Release, 2012, 163, 304-314.	4.8	110
87	The use of polymeric platinum(IV) prodrugs to deliver multinuclear platinum(II) drugs with reduced systemic toxicity and enhanced antitumor efficacy. Biomaterials, 2012, 33, 8657-8669.	5.7	77
88	Guanidinated amphiphilic cationic copolymer with enhanced gene delivery efficiency. Journal of Materials Chemistry, 2012, 22, 18915.	6.7	19
89	A complex of cyclohexane-1,2-diaminoplatinum with an amphiphilic biodegradable polymer with pendant carboxyl groups. Acta Biomaterialia, 2012, 8, 1859-1868.	4.1	34
90	A prodrug strategy to deliver cisplatin(IV) and paclitaxel in nanomicelles to improve efficacy and tolerance. Biomaterials, 2012, 33, 6507-6519.	5.7	182

#	Article	IF	Citations
91	Biodegradable copolymers with identical cationic segments and their performance in siRNA delivery. Journal of Controlled Release, 2012, 159, 251-260.	4.8	85
92	Delivery of Active DACHâ€Pt Anticancer Species by Biodegradable Amphiphilic Polymers Using Thiolâ€Ene Radical Addition. Macromolecular Bioscience, 2012, 12, 367-373.	2.1	16
93	New polymer–platinum (II) antitumor conjugates. Journal of Controlled Release, 2011, 152, e103-e104.	4.8	3
94	Biodegradable polymerÂâ^' cisplatin(IV) conjugate as a pro-drug of cisplatin(II). Biomaterials, 2011, 32, 7732-7739.	5.7	179
95	Zincâ€based catalyst for the ringâ€opening polymerization of cyclic esters. Journal of Applied Polymer Science, 2011, 121, 2378-2385.	1.3	10
96	Photoâ€Reduktion mit NIRâ€Licht von Zellkern akkumulierenden Pt ^{IV} â€Nanopartikeln fÃ1⁄4r eine kombinierte Tumor ausgerichtete Chemotherapie und Photodynamische Immuntherapie. Angewandte Chemie, O, , .	1.6	4
97	Restoration of the Immunogenicity of Tumor Cells for Enhanced Cancer Therapy via Nanoparticleâ€Mediated Copper Chaperone Inhibition. Angewandte Chemie, 0, , .	1.6	2