Wei Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1513816/publications.pdf

Version: 2024-02-01

		31949	20943
190	14,144	53	115
papers	citations	h-index	g-index
103	102	102	16017
193	193	193	10017
all docs	docs citations	times ranked	citing authors
193 all docs	193 docs citations	193 times ranked	16017 citing authors

#	Article	IF	CITATIONS
1	Carbon quantum dots and their applications. Chemical Society Reviews, 2015, 44, 362-381.	18.7	3,811
2	A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics, 2012, 6, 11301-1130113.	1.2	679
3	Paper-Based Microfluidic Devices by Plasma Treatment. Analytical Chemistry, 2008, 80, 9131-9134.	3.2	546
4	Electrogenerated Chemiluminescence Detection in Paper-Based Microfluidic Sensors. Analytical Chemistry, 2011, 83, 1300-1306.	3.2	539
5	Fabrication of paper-based microfluidic sensors by printing. Colloids and Surfaces B: Biointerfaces, 2010, 76, 564-570.	2.5	362
6	Zeolitic Imidazolate Framework/Graphene Oxide Hybrid Nanosheets as Seeds for the Growth of Ultrathin Molecular Sieving Membranes. Angewandte Chemie - International Edition, 2016, 55, 2048-2052.	7.2	281
7	Thread as a Versatile Material for Low-Cost Microfluidic Diagnostics. ACS Applied Materials & Diagnostics. Diagnostics. ACS Applied Materials & Diagnostics. Diagno	4.0	245
8	SPINOL-Derived Phosphoric Acids: Synthesis and Application in Enantioselective Friedelâ^'Crafts Reaction of Indoles with Imines. Journal of Organic Chemistry, 2010, 75, 8677-8680.	1.7	240
9	Liquid marble for gas sensing. Chemical Communications, 2010, 46, 4734.	2.2	215
10	A Highly Sensitive and Selective Electrochemical Biosensor for Direct Detection of MicroRNAs in Serum. Analytical Chemistry, 2013, 85, 4784-4789.	3.2	199
11	Liquid Marbles as Microâ€bioreactors for Rapid Blood Typing. Advanced Healthcare Materials, 2012, 1, 80-83.	3.9	182
12	Paper Diagnostic for Instantaneous Blood Typing. Analytical Chemistry, 2010, 82, 4158-4164.	3.2	177
13	Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose, 2010, 17, 649-659.	2.4	169
14	Superhydrophobic and oleophilic calcium carbonate powder as a selective oil sorbent with potential use in oil spill clean-ups. Chemical Engineering Journal, 2011, 166, 787-791.	6.6	164
15	Paperâ€Based Blood Typing Device That Reports Patient's Blood Type "in Writing― Angewandte Chemie International Edition, 2012, 51, 5497-5501.	⁻ 7.2	155
16	Patterned paper and alternative materials as substrates for low-cost microfluidic diagnostics. Microfluidics and Nanofluidics, 2012, 13, 769-787.	1.0	142
17	Gold Nanoparticle-Enabled Real-Time Ligation Chain Reaction for Ultrasensitive Detection of DNA. Journal of the American Chemical Society, 2012, 134, 14678-14681.	6.6	132
18	Quantitative biomarker assay with microfluidic paper-based analytical devices. Analytical and Bioanalytical Chemistry, 2010, 396, 495-501.	1.9	122

#	Article	IF	CITATIONS
19	Single-drop microextraction. TrAC - Trends in Analytical Chemistry, 2018, 108, 306-313.	5.8	122
20	A Label-Free Biosensor for Electrochemical Detection of Femtomolar MicroRNAs. Analytical Chemistry, 2013, 85, 1624-1630.	3.2	121
21	Advances of Paper-Based Microfluidics for Diagnostics—The Original Motivation and Current Status. ACS Sensors, 2016, 1, 1382-1393.	4.0	119
22	Applications of metal-organic frameworks as stationary phases in chromatography. TrAC - Trends in Analytical Chemistry, 2013, 50, 33-41.	5.8	117
23	Dye adsorption by self-recoverable, adjustable amphiphilic graphene aerogel. Journal of Colloid and Interface Science, 2019, 554, 682-691.	5.0	114
24	Blood drop patterns: Formation and applications. Advances in Colloid and Interface Science, 2016, 231, 1-14.	7.0	106
25	"Periodic-Table-Style―Paper Device for Monitoring Heavy Metals in Water. Analytical Chemistry, 2015, 87, 2555-2559.	3.2	104
26	Copper Nanowires as Conductive Ink for Low-Cost Draw-On Electronics. ACS Applied Materials & Company (Interfaces, 2015, 7, 16760-16766.	4.0	103
27	Validation of Paper-Based Assay for Rapid Blood Typing. Analytical Chemistry, 2012, 84, 1661-1668.	3.2	102
28	Application of smartphone-based spectroscopy to biosample analysis: A review. Biosensors and Bioelectronics, 2021, 172, 112788.	5.3	97
29	Recent advances in the application of layered double hydroxides in analytical chemistry: A review. Analytica Chimica Acta, 2020, 1103, 32-48.	2.6	95
30	Tumor Inside a Pearl Drop. Advanced Healthcare Materials, 2012, 1, 467-469.	3.9	94
31	Barcode-Like Paper Sensor for Smartphone Diagnostics: An Application of Blood Typing. Analytical Chemistry, 2014, 86, 11362-11367.	3.2	91
32	Porous liquid marble shell offers possibilities for gas detection and gas reactions. Chemical Engineering Journal, 2010, 165, 347-353.	6.6	88
33	Cardiogenesis of Embryonic Stem Cells with Liquid Marble Microâ€Bioreactor. Advanced Healthcare Materials, 2015, 4, 77-86.	3.9	88
34	Respirable liquid marble for the cultivation of microorganisms. Colloids and Surfaces B: Biointerfaces, 2013, 106, 187-190.	2.5	86
35	Cellulose nanofibers as binder for fabrication of superhydrophobic paper. Chemical Engineering Journal, 2012, 210, 74-79.	6.6	83
36	Biosurface engineering through ink jet printing. Colloids and Surfaces B: Biointerfaces, 2010, 75, 441-447.	2.5	81

#	Article	IF	Citations
37	Flow control concepts for thread-based microfluidic devices. Biomicrofluidics, 2011, 5, 14105.	1.2	81
38	Contact Angles and Wettability of Cellulosic Surfaces: A Review of Proposed Mechanisms and Test Strategies. BioResources, 2015, 10, .	0.5	81
39	Stretchableâ€Fiberâ€Confined Wetting Conductive Liquids as Wearable Human Health Monitors. Advanced Functional Materials, 2016, 26, 4511-4517.	7.8	79
40	Semiquantitative analysis on microfluidic thread-based analytical devices by ruler. Sensors and Actuators B: Chemical, 2014, 191, 586-594.	4.0	75
41	Drop penetration time in heterogeneous powder beds. Chemical Engineering Science, 2009, 64, 5210-5221.	1.9	72
42	Measurement of the Surface Tension of Liquid Marbles. Langmuir, 2011, 27, 12923-12929.	1.6	72
43	Microbial surface display of glucose dehydrogenase for amperometric glucose biosensor. Biosensors and Bioelectronics, 2013, 45, 19-24.	5.3	71
44	Mechanisms of red blood cells agglutination in antibody-treated paper. Analyst, The, 2012, 137, 2205.	1.7	69
45	Observation of the liquid marble morphology using confocal microscopy. Chemical Engineering Journal, 2010, 162, 396-405.	6.6	67
46	Smartphone Nanocolorimetric Determination of Hydrogen Sulfide in Biosamples after Silver–Gold Core–Shell Nanoprism-Based Headspace Single-Drop Microextraction. Analytical Chemistry, 2019, 91, 5888-5895.	3.2	65
47	Liquid marble formation: Spreading coefficients or kinetic energy?. Powder Technology, 2009, 196, 126-132.	2.1	64
48	Nanoparticulate Peroxidase/Catalase Mimetic and Its Application. Chemistry - A European Journal, 2012, 18, 8906-8911.	1.7	64
49	Synthesis and characterization of UV-curable castor oil-based polyfunctional polyurethane acrylate via photo-click chemistry and isocyanate polyurethane reaction. Progress in Organic Coatings, 2016, 93, 11-16.	1.9	63
50	Trace Analysis and Chemical Identification on Cellulose Nanofibers-Textured SERS Substrates Using the "Coffee Ring―Effect. ACS Sensors, 2017, 2, 1060-1067.	4.0	62
51	An inexpensive thread-based system for simple and rapid blood grouping. Analytical and Bioanalytical Chemistry, 2011, 399, 1869-1875.	1.9	59
52	Thin-film composite polyamide membrane modified by embedding functionalized boron nitride nanosheets for reverse osmosis. Journal of Membrane Science, 2020, 611, 118389.	4.1	56
53	Understanding Thread Properties for Red Blood Cell Antigen Assays: Weak ABO Blood Typing. ACS Applied Materials & Interfaces, 2014, 6, 22209-22215.	4.0	55
54	Logarithmic Data Processing Can Be Used Justifiably in the Plotting of a Calibration Curve. Analytical Chemistry, 2021, 93, 12156-12161.	3.2	54

#	Article	IF	Citations
55	A real-time colorimetric assay for label-free detection of microRNAs down to sub-femtomolar levels. Chemical Communications, 2013, 49, 4959.	2.2	53
56	Capillary driven low-cost V-groove microfluidic device with high sample transport efficiency. Lab on A Chip, 2010, 10, 2258.	3.1	52
57	Low-cost blood plasma separation method using salt functionalized paper. RSC Advances, 2015, 5, 53172-53179.	1.7	51
58	Coffee stains on paper. Chemical Engineering Science, 2015, 129, 34-41.	1.9	49
59	Chromatic analysis by monitoring unmodified silver nanoparticles reduction on double layer microfluidic paper-based analytical devices for selective and sensitive determination of mercury(II). Talanta, 2016, 155, 193-201.	2.9	49
60	Light-Up Probes Based on Fluorogens with Aggregation-Induced Emission Characteristics for Monoamine Oxidase-A Activity Study in Solution and in Living Cells. ACS Applied Materials & Samp; Interfaces, 2016, 8, 927-935.	4.0	49
61	Inducing drop to bubble transformation via resonance in ultrasound. Nature Communications, 2018, 9, 3546.	5.8	49
62	A novel technique for the formation of embryoid bodies inside liquid marbles. RSC Advances, 2013, 3, 14501.	1.7	47
63	Gold nanoprism/Tollens' reagent complex as plasmonic sensor in headspace single-drop microextraction for colorimetric detection of formaldehyde in food samples using smartphone readout. Talanta, 2020, 220, 121388.	2.9	47
64	Highly Sensitive Detection of Multiple MicroRNAs by High-Performance Liquid Chromatography Coupled with Long and Short Probe-Based Recycling Amplification. Analytical Chemistry, 2020, 92, 5033-5040.	3.2	46
65	Gold nanoparticles paper as a SERS bio-diagnostic platform. Journal of Colloid and Interface Science, 2013, 409, 59-65.	5.0	45
66	Thermal stability of bioactive enzymatic papers. Colloids and Surfaces B: Biointerfaces, 2010, 75, 239-246.	2.5	44
67	Liquid–paper interactions during liquid drop impact and recoil on paper surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 280, 203-215.	2.3	42
68	Cellulose nanofibre textured SERS substrate. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 468, 309-314.	2.3	42
69	Preparation of nanoporous graphene oxide by nanocrystal-masked etching: toward a nacre-mimetic metal–organic framework molecular sieving membrane. Journal of Materials Chemistry A, 2017, 5, 16255-16262.	5.2	42
70	Towards high-volumetric performance of Na/Li-ion batteries: a better anode material with molybdenum pentachloride–graphite intercalation compounds (MoCl ₅ –GlCs). Journal of Materials Chemistry A, 2020, 8, 2430-2438.	5.2	40
71	Surface and bulk characterisation of electrospun membranes: Problems and improvements. Colloids and Surfaces B: Biointerfaces, 2009, 71, 1-12.	2.5	39
72	Effect of formulation hydrophobicity on drug distribution in wet granulation. Chemical Engineering Journal, 2010, 164, 330-339.	6.6	39

#	Article	IF	Citations
73	An ultrasensitive homogeneous chemiluminescent assay for microRNAs. Chemical Communications, 2013, 49, 9401.	2.2	38
74	A study of the transport and immobilisation mechanisms of human red blood cells in a paper-based blood typing device using confocal microscopy. Analyst, The, 2013, 138, 4933.	1.7	37
75	Control Performance of Paper-Based Blood Analysis Devices through Paper Structure Design. ACS Applied Materials & Devices, 2014, 6, 21624-21631.	4.0	37
76	In-syringe extraction using compressible and self-recoverable, amphiphilic graphene aerogel as sorbent for determination of phenols. Talanta, 2019, 195, 165-172.	2.9	37
77	Paper-based device for rapid typing of secondary human blood groups. Analytical and Bioanalytical Chemistry, 2014, 406, 669-677.	1.9	36
78	Thermo-responsiveness and biocompatibility of star-shaped poly[2-(dimethylamino)ethyl methacrylate]-b-poly(sulfobetaine methacrylate) grafted on a β-cyclodextrin core. RSC Advances, 2015, 5, 28133-28140.	1.7	36
79	The role of vapour deposition in the hydrophobization treatment of cellulose fibres using alkyl ketene dimers and alkenyl succinic acid anhydrides. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 297, 203-210.	2.3	35
80	A label-free microRNA biosensor based on DNAzyme-catalyzed and microRNA-guided formation of a thin insulating polymer film. Biosensors and Bioelectronics, 2013, 44, 171-176.	5.3	35
81	A highly sensitive microRNA biosensor based on hybridized microRNA-guided deposition of polyaniline. Biosensors and Bioelectronics, 2014, 60, 195-200.	5.3	35
82	A preliminary study on the stabilization of blood typing antibodies sorbed into paper. Cellulose, 2014, 21, 717-727.	2.4	35
83	Antimony-doped tin oxide nanoparticles as peroxidase mimics for paper-based colorimetric detection of glucose using smartphone read-out. Mikrochimica Acta, 2019, 186, 403.	2.5	34
84	Transparent Bioreactors Based on Nanoparticle-Coated Liquid Marbles for in Situ Observation of Suspending Embryonic Body Formation and Differentiation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8789-8796.	4.0	34
85	Genotyping and quantification techniques for single-nucleotide polymorphisms. TrAC - Trends in Analytical Chemistry, 2015, 69, 1-13.	5.8	33
86	Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: A review. Journal of Hazardous Materials, 2020, 393, 122403.	6.5	32
87	Printed two-dimensional micro-zone plates for chemical analysis and ELISA. Lab on A Chip, 2011, 11, 2869.	3.1	31
88	Understanding desiccation patterns of blood sessile drops. Journal of Materials Chemistry B, 2017, 5, 8991-8998.	2.9	31
89	Magnetic Ni/Fe layered double hydroxide nanosheets as enhancer for DNA hairpin sensitive detection of miRNA. Talanta, 2018, 187, 265-271.	2.9	30
90	Surface Composition and Surface Energetics of Various Eucalypt Pulps. Cellulose, 1999, 6, 41-55.	2.4	29

#	Article	IF	CITATIONS
91	Three-dimensional microfluidic tape-paper-based sensing device for blood total bilirubin measurement in jaundiced neonates. Lab on A Chip, 2020, 20, 394-404.	3.1	29
92	Roughness effects of cellulose and paper substrates on water drop impact and recoil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 330, 151-160.	2.3	28
93	Go with the capillary flow. Simple thread-based microfluidics. Sensors and Actuators B: Chemical, 2021, 334, 129670.	4.0	28
94	Superhydrophobic surface supported bioassay – An application in blood typing. Colloids and Surfaces B: Biointerfaces, 2013, 106, 176-180.	2.5	27
95	Needle-based sampling coupled with colorimetric reaction catalyzed by layered double hydroxide peroxidase mimic for rapid detection of the change of d -glucose levels with time in bananas. Analytica Chimica Acta, 2018, 1001, 32-39.	2.6	27
96	Magnetic Three-Phase Single-Drop Microextraction for Rapid Amplification of the Signals of DNA and MicroRNA Analysis. Analytical Chemistry, 2020, 92, 12290-12296.	3.2	27
97	A highly sensitive and selective homogenous assay for profiling microRNA expression. Biosensors and Bioelectronics, 2014, 54, 650-655.	5.3	26
98	A triple-amplification strategy based on the formation of peroxidase-like two-dimensional DNA/Fe ₃ O ₄ networks initiated by the hybridization chain reaction for highly sensitive detection of microRNA. Chemical Communications, 2019, 55, 8386-8389.	2.2	26
99	A ferrofluid-based homogeneous assay for highly sensitive and selective detection of single-nucleotide polymorphisms. Chemical Communications, 2013, 49, 8114.	2.2	25
100	Gold nanoparticleâ€functionalized thread as a substrate for SERS study of analytes both bound and unbound to gold. AICHE Journal, 2014, 60, 1598-1605.	1.8	25
101	Valorisation of protein waste: An enzymatic approach to make commodity chemicals. Frontiers of Chemical Science and Engineering, 2015, 9, 295-307.	2.3	25
102	An aggregation-induced emission (AIE) ratiometric fluorescent cysteine probe with an exceptionally large blue shift. RSC Advances, 2016, 6, 5636-5640.	1.7	25
103	Red blood cell transport mechanisms in polyester thread-based blood typing devices. Analytical and Bioanalytical Chemistry, 2016, 408, 1365-1371.	1.9	25
104	An investigation of solubility of aliquat 336 in different extracted solutions. Fibers and Polymers, 2003, 4, 27-31.	1.1	23
105	Colorimetric detection of single-nucleotide polymorphisms with a real-time PCR-like sensitivity. Chemical Communications, 2012, 48, 10225.	2.2	23
106	Chemical and morphological stability of Aliquat 336/PVC membranes in membrane extraction: A preliminary study. Separation and Purification Technology, 2005, 46, 51-62.	3.9	22
107	The Influence of the Interior Structure of Aliquat 336/PVC Membranes to their Extraction Behavior. Separation Science and Technology, 2005, 39, 3527-3539.	1.3	22
108	A simple and highly sensitive fluorescence assay for microRNAs. Analyst, The, 2015, 140, 1932-1938.	1.7	22

#	Article	IF	CITATIONS
109	A Preliminary Study of the Spreading of AKD in the Presence of Capillary Structures. Journal of Colloid and Interface Science, 2001, 240, 172-181.	5.0	21
110	Charge transport between liquid marbles. Chemical Engineering Science, 2013, 97, 337-343.	1.9	21
111	Recent advances in the detection of multiple microRNAs. TrAC - Trends in Analytical Chemistry, 2021, 139, 116269.	5.8	21
112	Application of Au or Ag nanomaterials for colorimetric detection of glucose. Analyst, The, 2021, 146, 6726-6740.	1.7	21
113	Strategy To Enhance the Wettability of Bioacive Paper-Based Sensors. ACS Applied Materials & Samp; Interfaces, 2012, 4, 6573-6578.	4.0	20
114	Recent Advances in the Application of Covalent Organic Frameworks in Extraction: A Review. Critical Reviews in Analytical Chemistry, 0, , 1-34.	1.8	20
115	Controlling the contact angle of biological sessile drops for study of their desiccated cracking patterns. Journal of Materials Chemistry B, 2018, 6, 5867-5875.	2.9	19
116	Polyoxometalate-based materials in extraction, and electrochemical and optical detection methods: A review. Analytica Chimica Acta, 2022, 1209, 339509.	2.6	19
117	Forced wetting and dewetting of liquids on solid surfaces and their roles in offset printing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 316, 62-69.	2.3	18
118	An analysis of the thermodynamic conditions for solid powder particles spreading over liquid surface. Powder Technology, 2010, 201, 306-310.	2.1	18
119	A zero-step functionalization on paper-based biosensing platform for covalent biomolecule immobilization. Sensing and Bio-Sensing Research, 2015, 6, 13-18.	2,2	18
120	Effect of Bovine Serum Albumin Treatment on the Aging and Activity of Antibodies in Paper Diagnostics. Frontiers in Chemistry, 2018, 6, 161.	1.8	18
121	Study of paper-based assaying system for diagnosis of total serum bilirubin by colorimetric diazotization method. Sensors and Actuators B: Chemical, 2020, 305, 127448.	4.0	18
122	Colorimetric detection of single nucleotide polymorphisms in the presence of 10-fold excess of a wild-type gene. Biosensors and Bioelectronics, 2015, 68, 310-315.	5. 3	17
123	Multilayer cell culture system supported by thread. Sensors and Actuators B: Chemical, 2018, 257, 650-657.	4.0	17
124	Chemical composition of "AKD vapour―and its implication to AKD vapour sizing. Cellulose, 2005, 12, 641-652.	2.4	16
125	Rewetting effects and droplet motion on partially wetted powder surfaces. AICHE Journal, 2009, 55, 1402-1415.	1.8	16
126	Synthesis of water-soluble and cross-linkable ferrocenyl redox polymers for uses as mediators in biosensors. Sensors and Actuators B: Chemical, 2012, 168, 238-242.	4.0	16

#	Article	IF	CITATIONS
127	Synthesis of polyaniline via DNAzyme-catalyzed polymerization of aniline. RSC Advances, 2014, 4, 53257-53264.	1.7	16
128	Enhancing enzymatic stability of bioactive papers by implanting enzyme-immobilized mesoporous silica nanorods into paper. Journal of Materials Chemistry B, 2013, 1, 4719.	2.9	15
129	Damage or protection? The role of smoked crust on sandstones from Yungang Grottoes. Journal of Archaeological Science, 2013, 40, 935-942.	1.2	15
130	A low-cost forward and reverse blood typing deviceâ€"a blood sample is all you need to perform an assay. Analytical Methods, 2015, 7, 1186-1193.	1.3	15
131	Microchemical Study of Pigments and Binders in Polychrome Relics from Maiji Mountain Grottoes in Northwestern China. Microscopy and Microanalysis, 2016, 22, 845-856.	0.2	15
132	Paper-based assay for red blood cell antigen typing by the indirect antiglobulin test. Analytical and Bioanalytical Chemistry, 2016, 408, 5231-5238.	1.9	15
133	A novel aggregation induced emission active cyclometalated Ir(III) complex as a luminescent probe for detection of copper(II) ion in aqueous solution. Journal of Luminescence, 2016, 177, 299-305.	1.5	15
134	The role of polyaminoamide-epichlorohydrin (PAE) on antibody longevity in bioactive paper. Colloids and Surfaces B: Biointerfaces, 2017, 158, 197-202.	2.5	15
135	Intrinsic fluorescence from cellulose nanofibers and nanoparticles at cell friendly wavelengths. APL Photonics, 2019, 4, 020803.	3.0	15
136	An experimental investigation of the redistribution behaviour of alkyl ketene dimers and their corresponding ketones. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 212, 197-209.	2.3	14
137	An electronic sensor array for label-free detection of single-nucleotide polymorphisms. Biosensors and Bioelectronics, 2013, 43, 165-172.	5.3	14
138	Hydrothermal synthesis and electrochemical performance of nanoparticle Li2FeSiO4/C cathode materials for lithium ion batteries. Electrochimica Acta, 2015, 167, 340-347.	2.6	14
139	Characterisation of liquid marbles in commercial cosmetic products. Advanced Powder Technology, 2016, 27, 33-41.	2.0	14
140	Adhesion and anti-adhesion of viscous fluids on solid surfacesâ€"A study of ink transfer mechanism in waterless offset printing. Journal of Colloid and Interface Science, 2008, 318, 348-357.	5.0	13
141	Detection of single-nucleotide polymorphisms based on the formation of an electron-transfer impeding layer on an electrode surface. Chemical Communications, 2013, 49, 370-372.	2.2	13
142	Quantum dots and duplex-specific nuclease enabled ultrasensitive detection and serotyping of Dengue viruses in one step in a single tube. Biosensors and Bioelectronics, 2015, 65, 327-332.	5.3	13
143	Selective extraction by dissolvable (nitriloacetic acid-nickel)-layered double hydroxide coupled with reaction with potassium thiocyanate for sensitive detection of iron(III). Talanta, 2016, 154, 416-422.	2.9	13
144	pH-dependent selective ion exchange based on (ethylenediamintetraacetic acid-nickel)-layered double hydroxide to catalyze the polymerization of aniline for detection of Cu2+ and Fe3+. Talanta, 2018, 187, 287-294.	2.9	13

#	Article	IF	CITATIONS
145	Electrical circuits from capillary flow driven evaporation deposition of carbon nanotube ink in non-porous V-grooves. Journal of Colloid and Interface Science, 2011, 363, 425-430.	5.0	12
146	Three-dimensional DNA/Ni-Fe layered double oxide frame networks-induced "cusp-exposure―of Au@Ag nanostars for ultrasensitive determination of kanamycin. Sensors and Actuators B: Chemical, 2021, 343, 130082.	4.0	12
147	Solvent-free magnetic-tip microextraction into a single drop for fluorescence sensing. Sensors and Actuators B: Chemical, 2022, 352, 131044.	4.0	12
148	Polysaccharides as protectants for paper-based analytical devices with antibody. Talanta, 2017, 165, 357-363.	2.9	11
149	Ultrahigh-Performance Supercritical Fluid Chromatography and Detection of Multiple Biogenic Amines in Gentamicin Sulfate: Method Development Using Computer-Assisted Modeling. Analytical Chemistry, 2022, 94, 7229-7237.	3.2	11
150	Fabrication and characterization of electrospun PVDF-aliquat 336 fibre membrane for removal of cadmium from hydrochloric acid solutions. Journal of Materials Science, 2009, 44, 1101-1106.	1.7	10
151	Surface Modification of Cellulose Paper for Quantum Dot-based Sensing Applications. BioResources, 2014, 10, .	0.5	10
152	Low-Cost Chemical-Responsive Adhesive Sensing Chips. ACS Applied Materials & Distribution (2017), 9, 42366-42371.	4.0	10
153	Fluorometric determination of zinc(II) by using DNAzyme-modified magnetic microbeads. Mikrochimica Acta, 2018, 185, 447.	2.5	10
154	Enhancing Water Evaporation by Interfacial Silica Nanoparticles. Advanced Materials Interfaces, 2019, 6, 1900369.	1.9	10
155	Carboxypeptidase A immobilization with zeolitic imidazolate framework for enhancement of ochratoxin A degradation ability. Food and Agricultural Immunology, 2020, 31, 587-599.	0.7	10
156	Isothermal Noncoalescence of Liquid Droplets at the Airâ^'Liquid Interface. Langmuir, 2008, 24, 3199-3204.	1.6	9
157	A novel cyclometalated Ir(<scp>iii</scp>) complex based luminescence intensity and lifetime sensor for Cu ²⁺ . RSC Advances, 2016, 6, 16482-16488.	1.7	9
158	Multiple Factor Analysis on Preparation of Cellulose Nanofiber by Ball Milling from Softwood Pulp. BioResources, 2018, 13, .	0.5	9
159	A new understanding on the mechanism of fountain solution in the prevention of ink transfer to the non-image area in conventional offset lithography. Journal of Adhesion Science and Technology, 2004, 18, 1861-1887.	1.4	8
160	Effect of liquid droplet impact velocity on liquid wicking kinetics in surface V-grooves. Chemical Engineering Science, 2011, 66, 6120-6127.	1.9	8
161	Stabilizing and destabilizing protein surfactant-based foams in the presence of a chemical surfactant: Effect of adsorption kinetics. Journal of Colloid and Interface Science, 2016, 462, 56-63.	5.0	8
162	Desiccation Patterns of Plasma Sessile Drops. ACS Sensors, 2019, 4, 1701-1709.	4.0	8

#	Article	IF	Citations
163	Trace analysis on chromium (VI) in water by pre-concentration using a superhydrophobic surface and rapid sensing using a chemical-responsive adhesive tape. Talanta, 2020, 218, 121116.	2.9	8
164	An electrodeposited redox polymer–laccase composite film for highly efficient four-electron oxygen reduction. Journal of Power Sources, 2013, 226, 27-32.	4.0	7
165	An Interferenceâ€Free Glucose Biosensor Based on an Anionic Redox Polymerâ€Mediated Enzymatic Oxidation of Glucose. ChemPhysChem, 2013, 14, 2343-2347.	1.0	7
166	Fabrication of single-crystalline gold nanowires on cellulose nanofibers. Journal of Colloid and Interface Science, 2020, 562, 333-341.	5.0	7
167	Growth of gold nanoparticles on cellulose nanofibers. Cellulose, 2020, 27, 5041-5053.	2.4	7
168	Printing enzymatic reactions. Chemical Communications, 2011, 47, 1583-1585.	2.2	6
169	Investigation of electrospun and film-cast PVC membranes incorporated with aliquat 336 for efficient Cd extraction: A comparative study. Journal of Applied Polymer Science, 2011, 121, 327-335.	1.3	6
170	A rapid "cusp-covering―to Au nanostar as plasmonic sensor in a single-drop microreactor for the determination of kanamycin in biosamples. Sensors and Actuators B: Chemical, 2022, 366, 131993.	4.0	6
171	Printed two-dimensional micro-ring film plate for spot assays and its functionalization by immobilized enzymes. Sensors and Actuators B: Chemical, 2015, 219, 268-275.	4.0	5
172	Precipitation assay meets low wettability on paper: a simple approach for fabricating patterned paper sensors. Cellulose, 2018, 25, 583-592.	2.4	5
173	Three-in-one via syringe needle-based device: sampling, microextraction and peroxidase-like catalysis for colorimetric detection of the change of biogenic amines levels with time in meat. Food Chemistry, 2021, 358, 129900.	4.2	5
174	Multiply-amplified strategy for the ultrasensitive detection of kanamycin via aptamer-triggered three-dimensional G-quadruplex/Ni–Fe layered double oxide frame networks. Analytica Chimica Acta, 2021, 1187, 339169.	2.6	5
175	A novel polymer membrane for extraction applications. Fibers and Polymers, 2002, 3, 68-72.	1.1	4
176	Use of autoclave extraction-supercritical fluid chromatography/tandem mass spectrometry to analyze 4-(methylintrosamino)-1-(3-pyridyl)-1-butanone and N'-nitrosonornicotine in tobacco. Journal of Chromatography A, 2019, 1595, 207-214.	1.8	4
177	Improved membranes for the extraction of heavy metals. Fibers and Polymers, 2004, 5, 68-74.	1.1	3
178	Effects of the perspiration on the photo-fading of reactive dyes. Textile Reseach Journal, 2019, 89, 688-697.	1.1	3
179	Ni/Fe layered double hydroxide nanosheet/G-quadruplex as a new complex DNAzyme with highly enhanced peroxidase-mimic activity. Analyst, The, 2021, 146, 6470-6473.	1.7	3
180	Application of (C4H12N2)2[BiCl6]Cl·H2O/SiO2in the Synthesis of Hydratropic Aldehyde and Its Analogs. Chinese Journal of Organic Chemistry, 2015, 35, 2393.	0.6	3

#	Article	IF	CITATIONS
181	Ink Transfer and Refusal Mechanisms in Waterless Offset Printing. Journal of Adhesion Science and Technology, 2009, 23, 281-296.	1.4	2
182	Dynamics of colloidal pitch adsorption at the solid–liquid interface by surface plasmon resonance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 341, 127-133.	2.3	2
183	An experimental method for measuring the spreading velocity of surface active substances on thin films of liquid substrate. Chemical Engineering Science, 2009, 64, 3311-3319.	1.9	1
184	Tissue Engineering of Organs: Brain Tissues. , 2011, , 457-492.		1
185	Synthesis and Anticancer Properties of a Novel Bis-intercalator. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 632-638.	0.9	1
186	Liquid marble as microbioreactor for bioengineering applications. Proceedings of SPIE, 2015, , .	0.8	0
187	Topical issue on Wetting and Drying: Physics and Pattern Formation. European Physical Journal E, 2016, 39, 27.	0.7	0
188	REMOVED: Bioactive Paper Design for Human Blood Analysis: Paper Property Suitable for Large-scale Sensor Production. Biochemical Engineering Journal, 2016, 105, 473.	1.8	0
189	Comparison Study of Oxygen Quenching of Ru(II) Phenanthroline Complexes with Different Functional Groups. Acta Chimica Sinica, 2012, 70, 1081.	0.5	0
190	Photoelectric Properties of Novel Amide-Functionalized Ir(III) Complexes. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 2174-2182.	2.2	O