
Jirka Peschek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1513485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulated structural transitions unleash the chaperone activity of αB-crystallin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3780-9.	7.1	151
2	Multiple molecular architectures of the eye lens chaperone αB-crystallin elucidated by a triple hybrid approach. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20491-20496.	7.1	143
3	Methionine oxidation activates a transcription factor in response to oxidative stress. Proceedings of the United States of America, 2013, 110, 9493-9498.	7.1	138
4	The chaperone αB-crystallin uses different interfaces to capture an amorphous and an amyloid client. Nature Structural and Molecular Biology, 2015, 22, 898-905.	8.2	130
5	The eye lens chaperone α-crystallin forms defined globular assemblies. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13272-13277.	7.1	123
6	Structure and function of α-crystallins: Traversing from in vitro to in vivo. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 149-166.	2.4	82
7	High-resolution structures of the IgM Fc domains reveal principles of its hexamer formation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10183-10188.	7.1	73
8	The structural analysis of shark IgNAR antibodies reveals evolutionary principles of immunoglobulins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8155-8160.	7.1	67
9	A conformational <scp>RNA</scp> zipper promotes intron ejection during nonâ€conventional <i> <scp>XBP</scp> 1 </i> <scp>mRNA</scp> splicing. EMBO Reports, 2015, 16, 1688-1698.	4.5	40
10	Imbalances in the eye lens proteome are linked to cataract formation. Nature Structural and Molecular Biology, 2021, 28, 143-151.	8.2	26
11	Role of Cysteines in the Stability and DNA-Binding Activity of the Hypochlorite-Specific Transcription Factor HypT. PLoS ONE, 2013, 8, e75683.	2.5	25
12	tRNA ligase structure reveals kinetic competition between non-conventional mRNA splicing and mRNA decay. ELife, 2019, 8, .	6.0	24
13	The Regulatory Domain Stabilizes the p53 Tetramer by Intersubunit Contacts with the DNA Binding Domain. Journal of Molecular Biology, 2013, 425, 144-155.	4.2	20
14	A Stable Mutant Predisposes Antibody Domains to Amyloid Formation through Specific Non-Native Interactions. Journal of Molecular Biology, 2016, 428, 1315-1332.	4.2	20
15	Engineering ER-stress dependent non-conventional mRNA splicing. ELife, 2018, 7, .	6.0	17
16	Protomer alignment modulates specificity of RNA substrate recognition by Ire1. ELife, 2021, 10, .	6.0	7
17	Eukaryotic tRNA splicing– one goal, two strategies, many players. Biological Chemistry, 2022, 403, 765-778.	2.5	5
18	In vitro RNA Cleavage Assays to Characterize IRE1-dependent RNA Decay. Bio-protocol, 2019, 9, e3307.	0.4	1

#	Article	IF	CITATIONS
19	Regulating ER Protein Folding Homeostasis By Distinctively Processing mRNAs. FASEB Journal, 2018, 32, 653.9.	0.5	Ο