Masahiro Toyoda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1513290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sound transmission through a microperforated-panel structure with subdivided air cavities. Journal of the Acoustical Society of America, 2008, 124, 3594-3603.	1.1	72
2	Relationship between Helmholtz-resonance absorption and panel-type absorption in finite flexible microperforated-panel absorbers. Applied Acoustics, 2010, 71, 315-320.	3.3	61
3	Effect of a honeycomb on the sound absorption characteristics of panel-type absorbers. Applied Acoustics, 2011, 72, 943-948.	3.3	55
4	Sound insulation characteristics of multi-layer structures with a microperforated panel. Applied Acoustics, 2011, 72, 849-855.	3.3	37
5	Prediction for architectural structure-borne sound by the finite-difference time-domain method. Acoustical Science and Technology, 2009, 30, 265-276.	0.5	32
6	Reduction of acoustic radiation by perforated board and honeycomb layer systems. Applied Acoustics, 2007, 68, 71-85.	3.3	27
7	Improved sound absorption performance of three-dimensional MPP space sound absorbers by filling with porous materials. Applied Acoustics, 2017, 116, 311-316.	3.3	25
8	Reduction of acoustic radiation by impedance control with a perforated absorber system. Journal of Sound and Vibration, 2005, 286, 601-614.	3.9	22
9	A Pilot Study on the Sound Absorption Characteristics of Chicken Feathers as an Alternative Sustainable Acoustical Material. Sustainability, 2019, 11, 1476.	3.2	17
10	Reduction of rain noise from Ethylene/TetraFluoroEthylene membrane structures. Applied Acoustics, 2013, 74, 1309-1314.	3.3	13
11	Finite-difference time-domain analysis of structure-borne sound using a plate model based on the Kirchhoff-Love plate theory. Acoustical Science and Technology, 2014, 35, 127-138.	0.5	12
12	Prediction of microperforated panel absorbers using the finite-difference time-domain method. Wave Motion, 2019, 86, 110-124.	2.0	12
13	A Basic Study on a Rectangular Plane Space Sound Absorber Using Permeable Membranes. Sustainability, 2019, 11, 2185.	3.2	11
14	Numerical analyses of the sound absorption of cylindrical microperforated panel space absorbers with cores. Journal of the Acoustical Society of America, 2015, 138, 3531-3538.	1.1	9
15	Improvement of sound insulation performance of multilayer windows by using microperforated panel. Acoustical Science and Technology, 2011, 32, 79-81.	0.5	8
16	Numerical analyses of the sound absorption of three-dimensional MPP space sound absorbers. Applied Acoustics, 2014, 79, 69-74.	3.3	8
17	Vibration analysis for framed structures using the finite-difference time-domain method based on the Bernoulli-Euler beam theory. Acoustical Science and Technology, 2014, 35, 139-149.	0.5	8
18	Predicted Absorption Performance of Cylindrical and Rectangular Permeable Membrane Space Sound Absorbers Using the Three-Dimensional Boundary Element Method. Sustainability, 2019, 11, 2714.	3.2	8

Masahiro Toyoda

#	Article	IF	CITATIONS
19	An experimental study on the absorption characteristics of a three-dimensional permeable membrane space sound absorber. Noise Control Engineering Journal, 2015, 63, 300-307.	0.3	7
20	Finite-difference time-domain method for heterogeneous orthotropic media with damping. Acoustical Science and Technology, 2012, 33, 77-85.	0.5	7
21	Acoustic Performance of a Metascreen-Based Coating for Maritime Applications. Journal of Vibration and Acoustics, Transactions of the ASME, 2022, 144, .	1.6	7
22	Effects of an air-layer-subdivision technique on the sound transmission through a single plate. Journal of the Acoustical Society of America, 2008, 123, 825-831.	1.1	6
23	Prediction of permeable thin absorbers using the finite-difference time-domain method. Journal of the Acoustical Society of America, 2018, 143, 2870-2877.	1.1	6
24	Numerical analysis of the influence of acoustic resonance in air cavities between windowpanes on sound transmission loss. Applied Acoustics, 2013, 74, 1010-1017.	3.3	5
25	Frequency-dependent absorption and transmission boundary for the finite-difference time-domain method. Applied Acoustics, 2019, 145, 159-166.	3.3	5
26	ANALYSIS OF WAVE PROPAGATION IN BUILDING STRUCTURES AND SOUND RADIATION. Journal of Environmental Engineering (Japan), 2008, 73, 1155-1162.	0.4	4
27	Improvement of sound insulation performance of double-panel structures by using damping materials. Noise Control Engineering Journal, 2012, 60, 473-480.	0.3	4
28	Development of edge-effect suppression barriers. Acoustical Science and Technology, 2014, 35, 28-34.	0.5	4
29	Finite-difference time-domain analysis of structure-borne sound using a plate model. Acoustical Science and Technology, 2013, 34, 48-51.	0.5	4
30	Study on echo suppression effect and coloration due to periodic-type diffusers. Applied Acoustics, 2009, 70, 722-729.	3.3	3
31	Averaged material parameters and boundary conditions for the vibroacoustic finite-difference time-domain method with a nonuniform mesh. Acoustical Science and Technology, 2012, 33, 273-276.	0.5	3
32	Relation between frequency bandwidth of broadband noise and largeness of sound image. Acoustical Science and Technology, 2017, 38, 35-37.	0.5	3
33	Effects of Air-Layer Subdivision: A New Method of Improving Sound Insulation. Building Acoustics, 2006, 13, 49-59.	1.9	2
34	Largeness and shape of sound images captured by sketch-drawing experiments: Effects of bandwidth and center frequency of broadband noise. Acoustical Science and Technology, 2017, 38, 154-160.	0.5	2
35	Analysis and experiments of sound transmission through double window panels. Acoustical Science and Technology, 2008, 29, 397-398.	0.5	2
36	EFFECTS OF MECHANICAL LINKS AND A VENTILATOR ON SOUND INSULATION BY FLOOR COVERINGS SYSTEM. Journal of Environmental Engineering (Japan), 2006, 71, 7-12.	0.4	2

MASAHIRO TOYODA

#	Article	IF	CITATIONS
37	Control of radiated sound from open end of duct. Acoustical Science and Technology, 2013, 34, 289-291.	0.5	1
38	Basic study on relationship between airborne sound transmission and structure-borne sound radiation of a finite elastic plate. Acoustical Science and Technology, 2019, 40, 52-55.	0.5	1
39	Filter and correction for a hybrid sound field analysis of geometrical and wave-based acoustics. Acoustical Science and Technology, 2021, 42, 170-180.	0.5	1
40	Effect of discretization in thickness direction on eigenfrequency analysis of a circular plate by the finite-difference time-domain method. Acoustical Science and Technology, 2012, 33, 394-397.	0.5	1
41	Effect of Urethane Foam Cushioning on Structure-Borne Sound Transfer by a Slab with Panel Flooring. Archives of Acoustics, 2016, 41, 99-106.	0.8	1
42	Stability conditions for impedance boundaries in the finite-difference time-domain method. Acoustical Science and Technology, 2018, 39, 359-361.	0.5	1
43	Effects of Surface Diffusion of Reflectors on the Acoustic Power from the Stage Area. Building Acoustics, 2004, 11, 27-38.	1.9	Ο
44	Finite-Difference Time-Domain Method. , 2014, , 11-51.		0
45	Noise Propagation Simulation. , 2014, , 179-242.		0
46	Improved stability conditions for impedance boundaries in the finite-difference time-domain method. Acoustical Science and Technology, 2019, 40, 148-150.	0.5	0
47	Prediction of bandgap characteristics by sonic crystals. Acoustical Science and Technology, 2020, 41, 815-818.	0.5	0