Ramkumar Sambasivan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1513236/publications.pdf

Version: 2024-02-01

25 papers 2,559 citations

471509 17 h-index 25 g-index

29 all docs

29 docs citations

times ranked

29

3282 citing authors

#	Article	IF	CITATIONS
1	Vertebrate cranial mesoderm: developmental trajectory and evolutionary origin. Cellular and Molecular Life Sciences, 2020, 77, 1933-1945.	5.4	11
2	Modulation of βâ€catenin levels regulates cranial neural crest patterning and dispersal into first pharyngeal arch. Developmental Dynamics, 2020, 249, 1347-1364.	1.8	2
3	Neuromesodermal Progenitors: A Basis for Robust Axial Patterning in Development and Evolution. Frontiers in Cell and Developmental Biology, 2020, 8, 607516.	3.7	21
4	Characterization of new variant human ES line V H9 hESC (INSTEMe001-a): a tool for human stem cell and cancer research. Stem Cell Research, 2019, 37, 101444.	0.7	0
5	Infectivity of adeno-associated virus serotypes in mouse testis. BMC Biotechnology, 2018, 18, 70.	3.3	16
6	Divergent early mesoderm specification underlies distinct head and trunk muscle programmes in vertebrates. Development (Cambridge), 2018, 145, .	2. 5	14
7	Co-expression of Tbx6 and Sox2 identifies a novel transient neuromesoderm progenitor cell state. Development (Cambridge), 2017, 144, 4522-4529.	2.5	41
8	Comparison of multiple transcriptomes exposes unified and divergent features of quiescent and activated skeletal muscle stem cells. Skeletal Muscle, 2017, 7, 28.	4.2	29
9	Adult Skeletal Muscle Stem Cells. Results and Problems in Cell Differentiation, 2015, 56, 191-213.	0.7	57
10	A Cranial Mesoderm Origin for Esophagus Striated Muscles. Developmental Cell, 2015, 34, 694-704.	7.0	61
11	Variations in the Efficiency of Lineage Marking and Ablation Confound Distinctions between Myogenic Cell Populations. Developmental Cell, 2014, 31, 654-667.	7.0	47
12	Embryonic founders of adult muscle stem cells are primed by the determination gene Mrf4. Developmental Biology, 2013, 381, 241-255.	2.0	46
13	Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells. Journal of Cell Science, 2012, 125, 1738-49.	2.0	72
14	Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells. Development (Cambridge), 2012, 139, 4536-4548.	2.5	112
15	A Critical Requirement for Notch Signaling in Maintenance of the Quiescent Skeletal Muscle Stem Cell State. Stem Cells, 2012, 30, 243-252.	3.2	402
16	Myf5 haploinsufficiency reveals distinct cell fate potentials for adult skeletal muscle stem cells. Development (Cambridge), 2012, 139, e1208-e1208.	2.5	0
17	An eye on the head: the development and evolution of craniofacial muscles. Development (Cambridge), 2011, 138, 2401-2415.	2.5	177
18	Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development (Cambridge), 2011, 138, 3647-3656.	2.5	734

#	Article	IF	CITATIONS
19	MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4719-4724.	7.1	109
20	The small chromatin-binding protein p8 coordinates the association of anti-proliferative and pro-myogenic proteins at the myogenin promoter. Journal of Cell Science, 2009, 122, 3481-3491.	2.0	44
21	Distinct Regulatory Cascades Govern Extraocular and Pharyngeal Arch Muscle Progenitor Cell Fates. Developmental Cell, 2009, 16, 810-821.	7.0	323
22	A gene-trap strategy identifies quiescence-induced genes in synchronized myoblasts. Journal of Biosciences, 2008, 33, 27-44.	1.1	17
23	Skeletal muscle stem cell birth and properties. Seminars in Cell and Developmental Biology, 2007, 18, 870-882.	5.0	112
24	Tristetraprolin and LPS-inducible CXC chemokine are rapidly induced in presumptive satellite cells in response to skeletal muscle injury. Journal of Cell Science, 2002, 115, 2701-2712.	2.0	58
25	Tristetraprolin and LPS-inducible CXC chemokine are rapidly induced in presumptive satellite cells in response to skeletal muscle injury. Journal of Cell Science, 2002, 115, 2701-12.	2.0	49