Erika Berenguer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1512977/publications.pdf

Version: 2024-02-01

64 papers 6,031 citations

30 h-index 58 g-index

66 all docs 66
docs citations

66 times ranked 9948 citing authors

#	Article	IF	Citations
1	Comparing contemporary and lifetime rates of carbon accumulation from secondary forests in the eastern Amazon. Forest Ecology and Management, 2022, 508, 120053.	3.2	4
2	Predation on artificial caterpillars following understorey fires in humanâ€modified Amazonian forests. Biotropica, 2022, 54, 754-763.	1.6	1
3	Functional susceptibility of tropical forests to climate change. Nature Ecology and Evolution, 2022, 6, 878-889.	7.8	8
4	Water table depth modulates productivity and biomass across Amazonian forests. Global Ecology and Biogeography, 2022, 31, 1571-1588.	5.8	17
5	Global relationships in tree functional traits. Nature Communications, 2022, 13, .	12.8	29
6	Linking land-use and land-cover transitions to their ecological impact in the Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	24
7	Strong floristic distinctiveness across Neotropical successional forests. Science Advances, 2022, 8, .	10.3	10
8	Improving the spatialâ€temporal analysis of Amazonian fires. Global Change Biology, 2021, 27, 469-471.	9.5	17
9	Rainforest-to-pasture conversion stimulates soil methanogenesis across the Brazilian Amazon. ISME Journal, 2021, 15, 658-672.	9.8	21
10	Pantropical modelling of canopy functional traits using Sentinel-2 remote sensing data. Remote Sensing of Environment, 2021, 252, 112122.	11.0	38
11	Acoustic indices perform better when applied at ecologically meaningful time and frequency scales. Methods in Ecology and Evolution, 2021, 12, 421-431.	5.2	31
12	The Global Ecosystems Monitoring network: Monitoring ecosystem productivity and carbon cycling across the tropics. Biological Conservation, 2021, 253, 108889.	4.1	42
13	Assessing invertebrate herbivory in humanâ€modified tropical forest canopies. Ecology and Evolution, 2021, 11, 4012-4022.	1.9	5
14	The COVID-19 pandemic as an opportunity to weaken environmental protection in Brazil. Biological Conservation, 2021, 255, 108994.	4.1	122
15	Amazon tree dominance across forest strata. Nature Ecology and Evolution, 2021, 5, 757-767.	7.8	27
16	Functional redundancy of Amazonian dung beetles confers communityâ€level resistance to primary forest disturbance. Biotropica, 2021, 53, 1510-1521.	1.6	9
17	Tracking the impacts of El Ni $ ilde{A}$ \pm o drought and fire in human-modified Amazonian forests. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	51
18	Old-growth forest loss and secondary forest recovery across Amazonian countries. Environmental Research Letters, 2021, 16, 085009.	5.2	22

#	Article	IF	CITATIONS
19	Leaf-litter production in human-modified Amazonian forests following the El Niño-mediated drought and fires of 2015–2016. Forest Ecology and Management, 2021, 496, 119441.	3.2	6
20	Reassessing the role of cattle and pasture in Brazil's deforestation: A response to "Fire, deforestation, and livestock: When the smoke clears― Land Use Policy, 2021, 108, 105195.	5.6	17
21	Amazonian forest degradation must be incorporated into the COP26 agenda. Nature Geoscience, 2021, 14, 634-635.	12.9	32
22	The contribution of insects to global forest deadwood decomposition. Nature, 2021, 597, 77-81.	27.8	123
23	Spatio-temporal variation in dry season determines the Amazonian fire calendar. Environmental Research Letters, 2021, 16, 125009.	5.2	11
24	Chapter 20: Drivers and impacts of changes in aquatic ecosystems. , 2021, , .		1
25	Chapter 29: Restoration priorities and benefits within landscapes and catchments and across the Amazon basin. , 2021, , .		0
26	Chapter 21: Human well-being and health impacts of the degradation of terrestrial and aquatic ecosystems., 2021,,.		0
27	Chapter 19: Drivers and ecological impacts of deforestation and forest degradation., 2021,,.		1
28	Chapter 27: Conservation measures to counter the main threats to Amazonian biodiversity. , 2021, , .		0
29	Chapter 28: Restoration options for the Amazon. , 2021, , .		2
30	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
31	Clarifying Amazonia's burning crisis. Global Change Biology, 2020, 26, 319-321.	9.5	210
32	Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology, 2020, 101, e02954.	3.2	51
33	Integrated terrestrial-freshwater planning doubles conservation of tropical aquatic species. Science, 2020, 370, 117-121.	12.6	87
34	Belowground changes to community structure alter methane-cycling dynamics in Amazonia. Environment International, 2020, 145, 106131.	10.0	18
35	Smoke pollution's impacts in Amazonia. Science, 2020, 369, 634-635.	12.6	28
36	Long-term thermal sensitivity of Earth's tropical forests. Science, 2020, 368, 869-874.	12.6	198

#	Article	IF	CITATIONS
37	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	3.3	53
38	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514.	5.8	62
39	El Niño impacts on humanâ€modified tropical forests: Consequences for dung beetle diversity and associated ecological processes. Biotropica, 2020, 52, 252-262.	1.6	21
40	A largeâ€scale assessment of plant dispersal mode and seed traits across humanâ€modified Amazonian forests. Journal of Ecology, 2020, 108, 1373-1385.	4.0	20
41	Climatic and local stressor interactions threaten tropical forests and coral reefs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190116.	4.0	69
42	Estimating the multi-decadal carbon deficit of burned Amazonian forests. Environmental Research Letters, 2020, 15, 114023.	5.2	32
43	Seeing the woods through the saplings: Using wood density to assess the recovery of humanâ€modified Amazonian forests. Journal of Ecology, 2018, 106, 2190-2203.	4.0	31
44	21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, 2018, 9, 536.	12.8	485
45	Tree growth and stem carbon accumulation in human-modified Amazonian forests following drought and fire. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170308.	4.0	29
46	Quantifying immediate carbon emissions from El Ni $\tilde{A}\pm$ o-mediated wildfires in humid tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170312.	4.0	64
47	ENSO Drives interannual variation of forest woody growth across the tropics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170410.	4.0	41
48	Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180043.	4.0	79
49	Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Global Change Biology, 2018, 24, 5680-5694.	9.5	107
50	The future of hyperdiverse tropical ecosystems. Nature, 2018, 559, 517-526.	27.8	452
51	The Potential of Multisource Remote Sensing for Mapping the Biomass of a Degraded Amazonian Forest. Forests, 2018, 9, 303.	2.1	29
52	Carbon-focused conservation may fail to protect the most biodiverse tropical forests. Nature Climate Change, 2018, 8, 744-749.	18.8	98
53	Soil Organic Matter Responses to Anthropogenic Forest Disturbance and Land Use Change in the Eastern Brazilian Amazon. Sustainability, 2017, 9, 379.	3.2	51
54	Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature, 2016, 535, 144-147.	27.8	718

#	Article	IF	CITATIONS
55	Biodiversity consequences of land-use change and forest disturbance in the Amazon: A multi-scale assessment using ant communities. Biological Conservation, 2016, 197, 98-107.	4.1	119
56	Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Global Change Biology, 2016, 22, 92-109.	9.5	165
57	Idiosyncratic responses of Amazonian birds to primary forest disturbance. Oecologia, 2016, 180, 903-916.	2.0	29
58	Disentangling the contribution of multiple land covers to fireâ€mediated carbon emissions in Amazonia during the 2010 drought. Global Biogeochemical Cycles, 2015, 29, 1739-1753.	4.9	63
59	How pervasive is biotic homogenization in humanâ€modified tropical forest landscapes?. Ecology Letters, 2015, 18, 1108-1118.	6.4	233
60	Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests. PLoS ONE, 2015, 10, e0133139.	2.5	13
61	A largeâ€scale field assessment of carbon stocks in humanâ€modified tropical forests. Global Change Biology, 2014, 20, 3713-3726.	9.5	300
62	A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120166.	4.0	133
63	A framework for integrating biodiversity concerns into national REDD+ programmes. Biological Conservation, 2012, 154, 61-71.	4.1	138
64	The critical importance of considering fire in REDD+ programs. Biological Conservation, 2012, 154, 1-8.	4.1	95