

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1512816/publications.pdf Version: 2024-02-01

GAOLI

#	Article	IF	CITATIONS
1	A new monoterpenoid glycoside and a new phenolic glycoside isolated from <i>Dracocephalum moldavica</i> and their anti-complementary activity. Natural Product Research, 2023, 37, 169-179.	1.8	6
2	Four new terpenoids and other metabolites with potential anti-complementary activities from the aerial parts of <i>Dracocephalum moldavica</i> (Lamiaceae). Natural Product Research, 2023, 37, 2135-2143.	1.8	4
3	Two new iridoid glycosides from <i>Odontites vulgaris</i> . Journal of Asian Natural Products Research, 2023, 25, 324-329.	1.4	1
4	Two new phenolic glycosides from the fruits of <i>Illicium verum</i> . Journal of Asian Natural Products Research, 2022, 24, 31-38.	1.4	11
5	Synthesis, antitumor and antibacterial activities of cordycepin derivatives. Journal of Asian Natural Products Research, 2022, 24, 849-859.	1.4	5
6	One novel naphthalene derivative and other constituents with anti-complementary activities from the aerial parts of <i>Dracocephalum moldavica</i> . Journal of Asian Natural Products Research, 2022, 24, 1177-1184.	1.4	1
7	Modulating the aggregation of amyloid proteins by macrocycles. Aggregate, 2022, 3, .	9.9	14
8	Two new stilbene glucosides and a new benzoic acid derivative from Tournefortia sibirica. Journal of Asian Natural Products Research, 2022, , 1-8.	1.4	1
9	Recent Advances in Fluorescent Chemosensors for Protein Kinases. Chemistry - an Asian Journal, 2022, 17, .	3.3	1
10	Chemical constituents from Dracocephalum moldavica L. and their chemotaxonomic significance. Biochemical Systematics and Ecology, 2022, 102, 104422.	1.3	3
11	Isolation and Structural Characterization of Two Polysaccharides from <i>Dracocephalum moldavica</i> and Their Antiâ€Complementary Activity. Chemistry and Biodiversity, 2022, 19, .	2.1	4
12	Static decolorization of polysaccharides from the leaves of Rhododendron dauricum: Process optimization, characterization and antioxidant activities. Process Biochemistry, 2022, 121, 113-125.	3.7	8
13	A new triterpenoid and other constituents with cytotoxic activity from the roots of <i>Sanguisorba officinalis</i> L. Natural Product Research, 2021, 35, 3341-3345.	1.8	10
14	A new polyacetylene and other constituents with anti-inflammatory activity from <i>Artemisia halodendron</i> . Natural Product Research, 2021, 35, 1010-1013.	1.8	16
15	Two novel flavonoids from the leaves of <i>Rhododendron dauricum</i> L. with their inhibition of TNF-α production in LPS-induced RAW 264.7 cells. Natural Product Research, 2021, 35, 1331-1339.	1.8	21
16	Cucurbit[8]uril facilitated Michael addition for regioselective cysteine modification. Chemical Communications, 2021, 57, 6086-6089.	4.1	4
17	Chemical Constituents of the Skin of Theragra chalcogramma. Chemistry of Natural Compounds, 2021, 57, 197-198.	0.8	0
18	A New Ursane-Type Triterpenoid from the Leaves of Rhododendron dauricum with Cytotoxic Activity. Chemistry of Natural Compounds, 2021, 57, 327-330.	0.8	3

#	Article	IF	CITATIONS
19	Artesunate: A natural product-based immunomodulator involved in human complement. Biomedicine and Pharmacotherapy, 2021, 136, 111234.	5.6	5
20	Chemical constituents of Chimaphila japonica Miq. Biochemical Systematics and Ecology, 2021, 95, 104219.	1.3	5
21	Inhibitory Effects of Sulfated Polysaccharides from the Sea Cucumber <i>Cucumaria Frondosa</i> against Al²40 Aggregation and Cytotoxicity. ACS Chemical Neuroscience, 2021, 12, 1854-1859.	3.5	9
22	Synthesis, characterization and antioxidant activity of quercetin derivatives. Synthetic Communications, 2021, 51, 2944-2953.	2.1	4
23	Synthesis, characterization and in vitro anti-proliferative effects of pentacyclic triterpenoids. Medicinal Chemistry Research, 2021, 30, 2055.	2.4	2
24	Supramolecular tandem assay for tyrosinase based on cucurbit[8]uril induced peptide inclusion. Dyes and Pigments, 2021, 195, 109734.	3.7	5
25	Two new quinones and six additional metabolites with potential anti-inflammatory activities from the roots of Juglans mandshurica. Natural Product Research, 2021, , 1-8.	1.8	Ο
26	Anti-Tumor Effects of Carrimycin and Monomeric Isovalerylspiramycin I on Hepatocellular Carcinoma in Vitro and in Vivo. Frontiers in Pharmacology, 2021, 12, 774231.	3.5	9
27	Isolation of a new natural kingiside aglucone derivative and other anti-inflammatory constituents from <i>Syringa reticulata</i> . Natural Product Research, 2020, 34, 518-524.	1.8	8
28	A new aryldihydronaphthalene-type lignan and other metabolites with potential anti- inflammatory activities from <i>Corispermum mongolicum</i> Iljin. Natural Product Research, 2020, 34, 225-232.	1.8	9
29	A new sesquiterpene, a new monoterpene and other constituents with anti-inflammatory activities from the roots of <i>Aristolochia debilis</i> . Natural Product Research, 2020, 34, 351-358.	1.8	7
30	A new pentacyclic triterpenoid from the leaves of <i>Rhododendron dauricum</i> L. with inhibition of NO production in LPS-induced RAW 264.7 cells. Natural Product Research, 2020, 34, 3313-3319.	1.8	17
31	Chemical constituents isolated from the roots of Sanguisorba officinalis L. and their chemotaxonomic significance. Biochemical Systematics and Ecology, 2020, 89, 103999.	1.3	2
32	WDR74 induces nuclear β-catenin accumulation and activates Wnt-responsive genes to promote lung cancer growth and metastasis. Cancer Letters, 2020, 471, 103-115.	7.2	24
33	Cembrane diterpenoids from the whole plant of Tournefortia sibirica. Tetrahedron Letters, 2020, 61, 151413.	1.4	6
34	Chemical constituents from the whole plants of Sedum sarmentosum Bunge and their chemotaxonomic significance. Biochemical Systematics and Ecology, 2020, 93, 104180.	1.3	3
35	Enhanced therapeutic efficacy of a novel colon-specific nanosystem loading emodin on DSS-induced experimental colitis. Phytomedicine, 2020, 78, 153293.	5.3	15
36	Development, validation and comparison of three LC-MS/MS methods for determination of endogenous striatal oleoyl ethanolamine in mice. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1142, 122041.	2.3	3

#	Article	IF	CITATIONS
37	Inhibitory Effects of Chemical Constituents from Actinidia kolomikta on LPS-Induced Inflammatory Responses. Revista Brasileira De Farmacognosia, 2020, 30, 127-131.	1.4	6
38	Two new phenolic glycosides with anti-complementary activity from the roots of Sanguisorba officinalis L. Natural Product Research, 2020, 35, 1-10.	1.8	10
39	Phytochemical and chemotaxonomic study on the leaves of Rhododendron dauricum L. Biochemical Systematics and Ecology, 2020, 90, 104038.	1.3	8
40	Rational Design of a Cocktail of Inhibitors against AÎ ² Aggregation. Chemistry - A European Journal, 2020, 26, 3499-3503.	3.3	12
41	A PepT1 mediated medicinal nano-system for targeted delivery of cyclosporine A to alleviate acute severe ulcerative colitis. Biomaterials Science, 2019, 7, 4299-4309.	5.4	39
42	Pharmacokinetics and Novel Metabolite Identification of Tartary Buckwheat Extracts in Beagle Dogs Following Co-Administration with Ethanol. Pharmaceutics, 2019, 11, 525.	4.5	7
43	Phytochemical investigation on the roots of Juglans mandshurica and their chemotaxonomic significance. Biochemical Systematics and Ecology, 2019, 87, 103957.	1.3	5
44	A New Secoiridoid from the Stem Bark of Syringa reticulata. Chemistry of Natural Compounds, 2019, 55, 851-853.	0.8	2
45	Chemical Constituents of the Rhizomes of Actinidia kolomikta. Chemistry of Natural Compounds, 2019, 55, 975-977.	0.8	7
46	Black Phosphorus Nanomaterials Regulate the Aggregation of Amyloidâ $\in \hat{I}^2$. ChemNanoMat, 2019, 5, 606-611.	2.8	17
47	Simultaneous Quantitation of a Novel α1/β1-Blocker TJ0711 and Its Two Metabolites in Dog Plasma Using LC-MS/MS and Its Application to a Pharmacokinetic Study after Intravenous Infusion. Pharmaceutics, 2019, 11, 38.	4.5	1
48	Three new ursane-type triterpenoids from the roots of Sanguisorba officinalis L. and their cytotoxic activity. Phytochemistry Letters, 2019, 32, 96-100.	1.2	10
49	The sub-chronic impact of mPEG2k-PCLx polymeric nanocarriers on cytochrome P450 enzymes after intravenous administration in rats. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 101-113.	4.3	5
50	Secondary metabolites from Corispermum mongolicum Iljin and their chemotaxonomic significance. Biochemical Systematics and Ecology, 2019, 86, 103907.	1.3	2
51	Novel Mannitol-Based Small Molecules for Inhibiting Aggregation of α-Synuclein Amyloids in Parkinson's Disease. Frontiers in Molecular Biosciences, 2019, 6, 16.	3.5	42
52	Megastigmane derivatives from Corispermum mongolicum and their anti-inflammatory activities. Phytochemistry Letters, 2019, 30, 186-189.	1.2	7
53	Tryptophan–glucosamine conjugates modulate tau-derived PHF6 aggregation at low concentrations. Chemical Communications, 2019, 55, 14621-14624.	4.1	13
54	A new flavanone glycoside isolated from <i>Tournefortia sibirica</i> . Natural Product Research, 2019, 33, 3021-3024.	1.8	9

#	Article	IF	CITATIONS
55	A new benzofuran from Artemisia halodendron Turcz. ex Bess Natural Product Research, 2019, 33, 226-232.	1.8	9
56	Anti-inflammatory activities of the chemical constituents isolated from <i>Trametes versicolor</i> . Natural Product Research, 2019, 33, 2422-2425.	1.8	18
57	A new diarylheptanoid and a new diarylheptanoid glycoside isolated from the roots of <i>Juglans mandshurica</i> and their anti-inflammatory activities. Natural Product Research, 2019, 33, 701-707.	1.8	21
58	Simultaneous LCâ€MS/MS bioanalysis of etoposide and paclitaxel in mouse tissues and plasma after oral administration of selfâ€microemulsifying drugâ€delivery systems. Biomedical Chromatography, 2018, 32, e4192.	1.7	5
59	Accurate determination of a novel vasodilatory <i>î²</i> â€blocker TJ0711 using LCâ€MS/MS: Resolution of an isobaric metabolite interference in dog plasma. Biomedical Chromatography, 2018, 32, e4196.	1.7	1
60	One new 1,4-napthoquinone derivative from the roots of Juglans mandshurica. Natural Product Research, 2018, 32, 1017-1021.	1.8	10
61	In vitro effect of mPEG2k-PCLx micelles on rat liver cytochrome P450 enzymes. International Journal of Pharmaceutics, 2018, 552, 99-110.	5.2	10
62	Chemical Constituents of the Stem Barks of Quercus mongolica. Chemistry of Natural Compounds, 2018, 54, 973-974.	0.8	4
63	Oral Bioavailability of Kinsenoside in Beagle Dogs Measured by LC-MS/MS: Improvement of Ex Vivo Stability of a Lactone-Containing Compound. Pharmaceutics, 2018, 10, 87.	4.5	7
64	Differential Modulation of the Aggregation of Nâ€Terminal Truncated Aβ using Cucurbiturils. Chemistry - A European Journal, 2018, 24, 13647-13653.	3.3	19
65	Anti-Inflammatory Activity of Chemical Constituents Isolated from the Willow Bracket Medicinal Mushroom Phellinus igniarius (Agaricomycetes). International Journal of Medicinal Mushrooms, 2018, 20, 119-128.	1.5	10
66	A new ribonucleotide from Cordyceps militaris. Natural Product Research, 2017, 31, 2537-2543.	1.8	11
67	Polygoni Multiflori Radix derived anthraquinones alter bile acid disposition in sandwich-cultured rat hepatocytes. Toxicology in Vitro, 2017, 40, 313-323.	2.4	27
68	Prophylactic Vaccine Based on Pyroglutamate-3 Amyloid β Generates Strong Antibody Response and Rescues Cognitive Decline in Alzheimer's Disease Model Mice. ACS Chemical Neuroscience, 2017, 8, 454-459.	3.5	8
69	Enantioselective determination of 1â€[4â€(2â€methoxyethyl)phenoxy]â€3â€[2â€(2â€methoxyphenoxy)ethylamino]â€2â€propanol hydrochloride, antihypertensive agent, in rat plasma and tissues by liquid chromatography–tandem mass spectrometry. Journal of Separation Science. 2017. 40. 4135-4141.	a novel	3
70	Two new quinones from the roots of Juglans mandshurica. Archives of Pharmacal Research, 2016, 39, 1237-1241.	6.3	16
71	LC–MS/MS assay of ropinirole in rat biological matrices: elimination of lysoglycerophosphocholines-based matrix effect. Bioanalysis, 2016, 8, 1823-1835.	1.5	6
72	Uric acid quantification in fingernail of gout patients and healthy volunteers using HPLCâ€UV. Biomedical Chromatography, 2016, 30, 1338-1342.	1.7	11

#	ARTICLE	lF	CITATIONS
73	Chemical Constituents of the Leaves of Juglans mandshurica. Chemistry of Natural Compounds, 2016, 52, 93-95.	0.8	10
74	A new biflavonoid from the whole herb of <i>Lepisorus ussuriensis</i> . Natural Product Research, 2016, 30, 1470-1476.	1.8	5
75	The role of L-type amino acid transporters in the uptake of glyphosate across mammalian epithelial tissues. Chemosphere, 2016, 145, 487-494.	8.2	36
76	Study of the in vitro metabolism of TJ0711 using ultra high performance liquid chromatography with quadrupole time-of-flight and ultra fast liquid chromatography with quadrupole linear ion trap mass spectrometry. Journal of Separation Science, 2015, 38, 1837-1849.	2.5	7
77	Two new diarylheptanoids isolated from the roots of <i>Juglans mandshurica</i> . Natural Product Research, 2015, 29, 1839-1844.	1.8	25
78	Chemical constituents from the aerial parts of Melandrium firmum. Archives of Pharmacal Research, 2015, 38, 1746-1751.	6.3	6
79	New progress in active immunotherapy targeting to amyloid beta. Science China Chemistry, 2015, 58, 383-389.	8.2	1
80	First observation of N-acetyl leucine and N-acetyl isoleucine in diabetic patient hair and quantitative analysis by UPLC–ESI–MS/MS. Clinica Chimica Acta, 2015, 444, 143-148.	1.1	8
81	Screening of stabilizers for LC–MS/MS analysis of clevidipine and its primary metabolite in dog whole blood. Bioanalysis, 2015, 7, 1457-1469.	1.5	10
82	Chemical constituents of Chroogomphus rutilus (Schaeff.) O.K. Mill. Biochemical Systematics and Ecology, 2015, 61, 203-207.	1.3	8
83	Two new conjugated ketonic fatty acids from the stem bark of JuglJuglans mandshurica. Chinese Journal of Natural Medicines, 2015, 13, 299-302.	1.3	6
84	Simultaneous quantification of fosinopril and its active metabolite fosinoprilat in rat plasma by UFLC-MS/MS: Application of formic acid in the stabilization of an ester-containing drug. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 990, 141-149.	2.3	8
85	LC-MS/MS analysis of pramipexole in mouse plasma and tissues: Elimination of lipid matrix effects using weak cation exchange mode based solid-phase extraction. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 988, 157-165.	2.3	15
86	Human nails metabolite analysis: A rapid and simple method for quantification of uric acid in human fingernail by high-performance liquid chromatography with UV-detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 1002, 394-398.	2.3	60
87	A new chromene from the fruiting bodies of <i>Chroogomphus rutilus</i> . Natural Product Research, 2015, 29, 698-702.	1.8	5
88	Cytotoxic anthraquinone dimers from Melandrium firmum. Archives of Pharmacal Research, 2015, 38, 1033-1037.	6.3	8
89	Chemical constituents from the leaves of Juglans mandshurica. Archives of Pharmacal Research, 2015, 38, 480-484.	6.3	31
90	A new phenolic glycoside from Juglans mandshurica. Natural Product Research, 2014, 28, 998-1002.	1.8	18

#	Article	IF	CITATIONS
91	A quantitative analysis of the polyamine in lung cancer patient fingernails by LCâ€ESIâ€MS/MS. Biomedical Chromatography, 2014, 28, 492-499.	1.7	25
92	Rapid and Sensitive Determination of Diacetylpolyamines in Human Fingernail by Ultraperformance Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry. European Journal of Mass Spectrometry, 2014, 20, 477-486.	1.0	8
93	Protective constituents against sepsis in mice from the root cortex ofPaeonia suffruticosa. Archives of Pharmacal Research, 2004, 27, 1123-1126.	6.3	29
94	Cytotoxicity and dna topoisomerases inhibitory activity of constituents from the sclerotium ofPoria cocos. Archives of Pharmacal Research, 2004, 27, 829-833.	6.3	55
95	Lignans from the Bark of Machilus thunbergii and Their DNA Topoisomerases I and II Inhibition and Cytotoxicity. Biological and Pharmaceutical Bulletin, 2004, 27, 1147-1150.	1.4	37
96	DNA topoisomerases I and II inhibitory activity of constituents isolated fromJuglans mandshurica. Archives of Pharmacal Research, 2003, 26, 466-470.	6.3	36
97	Four New Diarylheptanoids from the Roots of Juglans mandshurica Chemical and Pharmaceutical Bulletin, 2003, 51, 262-264.	1.3	63
98	Melanin Biosynthesis Inhibitors from the Bark of Machilus thunbergii. Biological and Pharmaceutical Bulletin, 2003, 26, 1039-1041.	1.4	39
99	Cytotoxic Diarylheptanoids from the Roots of Juglans mandshurica. Journal of Natural Products, 2002, 65, 1707-1708.	3.0	89
100	Stereoselective steady state disposition and action of propafenone in Chinese subjects. British Journal of Clinical Pharmacology, 1998, 46, 441-445.	2.4	14