Guoping Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1512787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Silencing of SIMYB55 affects plant flowering and enhances tolerance to drought and salt stress in tomato. Plant Science, 2022, 316, 111166.	3.6	14
2	SICHYR1, a RING and CHY zinc finger domain-containing protein, promotes tomato fruit ripening by reprograming abscisic acid and ethylene signaling. Scientia Horticulturae, 2022, 296, 110900.	3.6	3
3	New insight into the pigment composition and molecular mechanism of flower coloration in tulip (Tulipa gesneriana L.) cultivars with various petal colors. Plant Science, 2022, 317, 111193.	3.6	12
4	The AP2/ERF transcription factor SIERF.F5 functions in leaf senescence in tomato. Plant Cell Reports, 2022, 41, 1181-1195.	5.6	14
5	SIMBP22 overexpression in tomato affects flower morphology and fruit development. Journal of Plant Physiology, 2022, 272, 153687.	3.5	4
6	Knockout of SIALKBH2 weakens the DNA damage repair ability of tomato. Plant Science, 2022, 319, 111266.	3.6	1
7	Genome-Wide Identification, Classification and Expression Analysis of m6A Gene Family in Solanum lycopersicum. International Journal of Molecular Sciences, 2022, 23, 4522.	4.1	9
8	Overexpression of SIPRE5, an atypical bHLH transcription factor, affects plant morphology and chlorophyll accumulation in tomato. Journal of Plant Physiology, 2022, 273, 153698.	3.5	11
9	SIJAZ10 and SIJAZ11 mediate dark-induced leaf senescence and regeneration. PLoS Genetics, 2022, 18, e1010285.	3.5	5
10	A novel E6-like gene, E6-2, affects fruit ripening in tomato. Plant Science, 2021, 313, 111066.	3.6	4
11	Novel Translational and Phosphorylation Modification Regulation Mechanisms of Tomato (Solanum) Tj ETQq1 1 International Journal of Molecular Sciences, 2021, 22, 11782.	0.784314 4.1	rgBT /Overlo 7
12	Silencing of the MADS-Box Gene SIMADS83 Enhances Adventitious Root Formation in Tomato Plants. Journal of Plant Growth Regulation, 2020, 39, 941-953.	5.1	2
13	Anthocyanin Accumulation and Transcriptional Regulation of Anthocyanin Biosynthesis in Purple Pepper. Journal of Agricultural and Food Chemistry, 2020, 68, 12152-12163.	5.2	47
14	Overexpression of SIMBP22 in Tomato Affects Plant Growth and Enhances Tolerance to Drought Stress. Plant Science, 2020, 301, 110672.	3.6	15
15	The basic helix-loop-helix transcription factor bHLH95 affects fruit ripening and multiple metabolisms in tomato. Journal of Experimental Botany, 2020, 71, 6311-6327.	4.8	27
16	Suppression of a hexokinase gene, SlHXK1, leads to accelerated leaf senescence and stunted plant growth in tomato. Plant Science, 2020, 298, 110544.	3.6	15
17	Isolation of the brassinosteroid receptor genes and recharacterization of dwarf plants by silencing of SIBRI1 in tomato. Plant Growth Regulation, 2019, 89, 59-71.	3.4	7
18	The bHLH transcription factor SIPRE2 regulates tomato fruit development and modulates plant response to gibberellin. Plant Cell Reports, 2019, 38, 1053-1064.	5.6	43

#	Article	IF	CITATIONS
19	Genome-Wide Analysis of the MADS-Box Transcription Factor Family in Solanum lycopersicum. International Journal of Molecular Sciences, 2019, 20, 2961.	4.1	69
20	Metabolic and molecular analysis of nonuniform anthocyanin pigmentation in tomato fruit under high light. Horticulture Research, 2019, 6, 56.	6.3	29
21	The tomato MADS-box gene SIMBP9 negatively regulates lateral root formation and apical dominance by reducing auxin biosynthesis and transport. Plant Cell Reports, 2019, 38, 951-963.	5.6	14
22	Overexpression of SIOFP20 affects floral organ and pollen development. Horticulture Research, 2019, 6, 125.	6.3	22
23	Overexpression of SIOFP20 in Tomato Affects Plant Growth, Chlorophyll Accumulation, and Leaf Senescence. Frontiers in Plant Science, 2019, 10, 1510.	3.6	22
24	Molecular and Phylogenetic Analyses of the Mediator Subunit Genes in Solanum lycopersicum. Frontiers in Genetics, 2019, 10, 1222.	2.3	6
25	Accumulation of Anthocyanin and Its Associated Gene Expression in Purple Tumorous Stem Mustard (<i>Brassica juncea</i> var. <i>tumida</i> Tsen et Lee) Sprouts When Exposed to Light, Dark, Sugar, and Methyl Jasmonate. Journal of Agricultural and Food Chemistry, 2019, 67, 856-866.	5.2	19
26	An AGAMOUS MADS-box protein, SIMBP3, regulates the speed of placenta liquefaction and controls seed formation in tomato. Journal of Experimental Botany, 2019, 70, 909-924.	4.8	38
27	Silencing SIMED18, tomato Mediator subunit 18 gene, restricts internode elongation and leaf expansion. Scientific Reports, 2018, 8, 3285.	3.3	12
28	A tomato MADS-box protein, SICMB1, regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening. Scientific Reports, 2018, 8, 3413.	3.3	49
29	SIHDA5, a Tomato Histone Deacetylase Gene, Is Involved in Responding to Salt, Drought, and ABA. Plant Molecular Biology Reporter, 2018, 36, 36-44.	1.8	13
30	Suppression of a tomato SEPALLATA MADS-box gene, SICMB1, generates altered inflorescence architecture and enlarged sepals. Plant Science, 2018, 272, 75-87.	3.6	24
31	The SIFSR gene controls fruit shelf-life in tomato. Journal of Experimental Botany, 2018, 69, 2897-2909.	4.8	43
32	Manipulation of plant architecture and ïم,owering time by down-regulation of the GRAS transcription factor SIGRAS26 in Solanum lycopersicum. Plant Science, 2018, 271, 81-93.	3.6	25
33	A histone deacetylase gene, SIHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. Plant Cell Reports, 2018, 37, 125-135.	5.6	48
34	The Jasmonate ZIM-domain protein gene SIJAZ2 regulates plant morphology and accelerates flower initiation in Solanum lycopersicum plants. Plant Science, 2018, 267, 65-73.	3.6	57
35	Suppression of SIMBP15 Inhibits Plant Vegetative Growth and Delays Fruit Ripening in Tomato. Frontiers in Plant Science, 2018, 9, 938	3.6	19
36	Cold stress improves the production of artemisinin depending on the increase in endogenous jasmonate. Biotechnology and Applied Biochemistry, 2017, 64, 305-314.	3.1	45

#	Article	IF	CITATIONS
37	Silencing of SIHB2 Improves Drought, Salt Stress Tolerance, and Induces Stress-Related Gene Expression in Tomato. Journal of Plant Growth Regulation, 2017, 36, 578-589.	5.1	19
38	Molecular Characterization of Nine Tissue-Specific or Stress-Responsive Genes of Histone Deacetylase in Tomato (Solanum lycopersicum). Journal of Plant Growth Regulation, 2017, 36, 566-577.	5.1	16
39	The MADS-box gene SIMBP11 regulates plant architecture and affects reproductive development in tomato plants. Plant Science, 2017, 258, 90-101.	3.6	36
40	The abiotic stress-responsive NAC transcription factor SINAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Plant Cell, Tissue and Organ Culture, 2017, 129, 161-174.	2.3	43
41	Suppression of the MADS-box gene SIMBP8 accelerates fruit ripening of tomato (Solanum) Tj ETQq1 1 0.784314	rgBT /Ove	rlgck 10 Tr
42	Silencing SIAGL6, a tomato AGAMOUS-LIKE6 lineage gene, generates fused sepal and green petal. Plant Cell Reports, 2017, 36, 959-969.	5.6	23
43	Physiological, biochemical, and molecular differences in chloroplast synthesis between leaf and corolla of cabbage (Brassica rapa L. var. chinensis) and rapeseed (Brassica napus L.). Plant Growth Regulation, 2017, 82, 91-101.	3.4	0
44	Silencing of histone deacetylase SIHDT3 delays fruit ripening and suppresses carotenoid accumulation in tomato. Plant Science, 2017, 265, 29-38.	3.6	47
45	The tomato histone deacetylase SIHDA1 contributes to the repression of fruit ripening and carotenoid accumulation. Scientific Reports, 2017, 7, 7930.	3.3	33
46	Overexpression of SIPRE2, an atypical bHLH transcription factor, affects plant morphology and fruit pigment accumulation in tomato. Scientific Reports, 2017, 7, 5786.	3.3	56
47	Tomato (Solanum lycopersicum) MADS-box transcription factor SIMBP8 regulates drought, salt tolerance and stress-related genes. Plant Growth Regulation, 2017, 83, 55-68.	3.4	53
48	The tomato floral homeotic protein FBP1-like gene, SIGLO1, plays key roles in petal and stamen development. Scientific Reports, 2016, 6, 20454.	3.3	22
49	Overexpression of SIUPA-like induces cell enlargement, aberrant development and low stress tolerance through phytohormonal pathway in tomato. Scientific Reports, 2016, 6, 23818.	3.3	5
50	Genetically engineered anthocyanin pathway for high health-promoting pigment production in eggplant. Molecular Breeding, 2016, 36, 1.	2.1	37
51	Solanum lycopersicum agamous-like MADS-box protein AGL15-like gene, SIMBP11, confers salt stress tolerance. Molecular Breeding, 2016, 36, 1.	2.1	55
52	Silencing SlGID2, a putative F-box protein gene, generates a dwarf plant and dark-green leaves in tomato. Plant Physiology and Biochemistry, 2016, 109, 491-501.	5.8	16
53	Anthocyanins and flavonols are responsible for purple color of Lablab purpureus (L.) sweet pods. Plant Physiology and Biochemistry, 2016, 103, 183-190.	5.8	22
54	SIDEAD31, a Putative DEAD-Box RNA Helicase Gene, Regulates Salt and Drought Tolerance and Stress-Related Genes in Tomato. PLoS ONE, 2015, 10, e0133849.	2.5	63

#	Article	IF	CITATIONS
55	OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Research, 2015, 43, W78-W84.	14.5	612
56	Dual silencing of DmCPD and DmGA20ox genes generates a novel miniature and delayed-flowering Dendranthema morifolium variety. Molecular Breeding, 2015, 35, 1.	2.1	13
57	Tomato lipoxygenase D involved in the biosynthesis of jasmonic acid and tolerance to abiotic and biotic stress in tomato. Plant Biotechnology Reports, 2015, 9, 37-45.	1.5	27
58	Anthocyanin Accumulation and Molecular Analysis of Correlated Genes in Purple Kohlrabi (<i>Brassica oleracea</i> var. <i>gongylodes</i> L.). Journal of Agricultural and Food Chemistry, 2015, 63, 4160-4169.	5.2	65
59	Silencing SIELP2L, a tomato Elongator complex protein 2-like gene, inhibits leaf growth, accelerates leaf, sepal senescence and produces dark-green fruit. Scientific Reports, 2015, 5, 7693.	3.3	19
60	Anthocyanin composition and expression analysis of anthocyanin biosynthetic genes in kidney bean pod. Plant Physiology and Biochemistry, 2015, 97, 304-312.	5.8	22
61	A Non-Climacteric Fruit Gene CaMADS-RIN Regulates Fruit Ripening and Ethylene Biosynthesis in Climacteric Fruit. PLoS ONE, 2014, 9, e95559.	2.5	28
62	AIM: a comprehensive Arabidopsis interactome module database and related interologs in plants. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau117.	3.0	8
63	Anthocyanin Accumulation and Transcriptional Regulation of Anthocyanin Biosynthesis in Purple Bok Choy (<i>Brassica rapa</i> var. <i>chinensis</i>). Journal of Agricultural and Food Chemistry, 2014, 62, 12366-12376.	5.2	78
64	Simultaneous Silencing of Five Lipoxygenase Genes Increases the Contents of α-Linolenic and Linoleic Acids in Tomato (<i>Solanum lycopersicum</i> L.) Fruits. Journal of Agricultural and Food Chemistry, 2014, 62, 11988-11993.	5.2	6
65	Jointly silencing BoDWARF, BoGA20ox and BoSP (SELF-PRUNING) produces a novel miniature ornamental Brassica oleracea var. acephala f. tricolor variety. Molecular Breeding, 2014, 34, 99-113.	2.1	4
66	A New Tomato NAC (NAM/ATAF1/2/CUC2) Transcription Factor, SINAC4, Functions as a Positive Regulator of Fruit Ripening and Carotenoid Accumulation. Plant and Cell Physiology, 2014, 55, 119-135.	3.1	296
67	The abiotic stress-responsive NAC-type transcription factor SINAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Reports, 2014, 33, 1851-1863.	5.6	132
68	Accumulation and Molecular Regulation of Anthocyanin in Purple Tumorous Stem Mustard (<i>Brassica juncea</i> var. <i>tumida</i> Tsen et Lee). Journal of Agricultural and Food Chemistry, 2014, 62, 7813-7821.	5.2	52
69	Anthocyanin Accumulation and Molecular Analysis of Anthocyanin Biosynthesis-Associated Genes in Eggplant (<i>Solanum melongena</i> L.). Journal of Agricultural and Food Chemistry, 2014, 62, 2906-2912.	5.2	96
70	Heterologous Expression of BoPAP1 in Tomato Induces Stamen Specific Anthocyanin Accumulation and Enhances Tolerance to a Long-Term Low Temperature Stress. Journal of Plant Growth Regulation, 2014, 33, 757-768.	5.1	19
71	Molecular Characterization of Six Tissue-Specific or Stress-Inducible Genes of NAC Transcription Factor Family in Tomato (Solanum lycopersicum). Journal of Plant Growth Regulation, 2014, 33, 730-744.	5.1	27
72	Overexpression of a novel MADS-box gene SIFYFL delays senescence, fruit ripening and abscission in tomato. Scientific Reports, 2014, 4, 4367.	3.3	69

#	Article	IF	CITATIONS
73	Transgenic pepper plants carrying RNA interference constructs of CaCOI1 gene show severe abnormality. Molecular Breeding, 2013, 31, 971-979.	2.1	3
74	Overexpression of the Tomato 13-Lipoxygenase Gene TomloxD Increases Generation of Endogenous Jasmonic Acid and Resistance to Cladosporium fulvum and High Temperature. Plant Molecular Biology Reporter, 2013, 31, 1141-1149.	1.8	38
75	A Tomato MADS-Box Transcription Factor, SIMADS1, Acts as a Negative Regulator of Fruit Ripening. Plant Physiology, 2013, 163, 1026-1036.	4.8	161
76	Biochemical and molecular analysis of a temperature-sensitive albino mutant in kale named "White Doveâ€: Plant Growth Regulation, 2013, 71, 281-294.	3.4	23
77	A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor). Plant Cell Reports, 2012, 31, 281-289.	5.6	122
78	An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Reports, 2012, 31, 349-360.	5.6	222
79	Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L Molecular Genetics and Genomics, 2012, 287, 39-54.	2.1	71
80	Functional analysis of tomato LeEIL1 in an Arabidopsis ein2 mutant. Acta Physiologiae Plantarum, 2011, 33, 489-496.	2.1	1
81	Quantitative prediction of the thermal motion and intrinsic disorder of protein cofactors in crystalline state: A case study on halide anions. Journal of Theoretical Biology, 2010, 266, 291-298.	1.7	10
82	A powerful hybrid puc operon promoter tightly regulated by both IPTG and low oxygen level. Biochemistry (Moscow), 2010, 75, 519-525.	1.5	11
83	Heterologous synthesis and assembly of functional LHII antenna complexes from Rhodovulum sulfidophilum in Rhodobacter sphaeroides mutant. Molecular Biology Reports, 2009, 36, 1695-1702.	2.3	5
84	High human GLUT1, GLUT2, and GLUT3 expression in Schizosaccharomyces pombe. Biochemistry (Moscow), 2009, 74, 75-80.	1.5	4
85	Characteristics of light-harvesting complex II mutant of Rhodobacter sphaeroides with alterations at the transmembrane helices of Î ² -subunit. Biochemistry (Moscow), 2009, 74, 807-812.	1.5	2
86	The Wettability and Topography of Self-Assembled Protein Monolayer Linked by Alkanethiols. , 2009, , .		2
87	Applying Novel Threeâ€Dimensional Holographic Vector of Atomic Interaction Field to QSAR Studies of Artemisinin Derivatives. QSAR and Combinatorial Science, 2008, 27, 198-207.	1.4	3
88	Differential regulation of tomato ethylene responsive factor LeERF3b, a putative repressor, and the activator Pti4 in ripening mutants and in response to environmental stresses. Journal of Plant Physiology, 2008, 165, 662-670.	3.5	58
89	Cloning and characterization of the EIN2-homology gene LeEIN2 from tomato. DNA Sequence, 2007, 18, 33-38.	0.7	15
90	Identification of a Specific Isoform of Tomato Lipoxygenase (TomloxC) Involved in the Generation of Fatty Acid-Derived Flavor Compounds. Plant Physiology, 2004, 136, 2641-2651.	4.8	329

#	Article	IF	CITATIONS
91	Constitutive expression of EIL-like transcription factor partially restores ripening in the ethylene-insensitive Nr tomato mutant. Journal of Experimental Botany, 2004, 55, 1491-1497.	4.8	59