Guoping Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1512787/publications.pdf

Version: 2024-02-01

91 papers

4,096 citations

32 h-index 60 g-index

92 all docs 92 docs citations 92 times ranked 4703 citing authors

#	Article	IF	CITATIONS
1	OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Research, 2015, 43, W78-W84.	14.5	612
2	Identification of a Specific Isoform of Tomato Lipoxygenase (TomloxC) Involved in the Generation of Fatty Acid-Derived Flavor Compounds. Plant Physiology, 2004, 136, 2641-2651.	4.8	329
3	A New Tomato NAC (NAM/ATAF1/2/CUC2) Transcription Factor, SlNAC4, Functions as a Positive Regulator of Fruit Ripening and Carotenoid Accumulation. Plant and Cell Physiology, 2014, 55, 119-135.	3.1	296
4	An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Reports, 2012, 31, 349-360.	5 . 6	222
5	A Tomato MADS-Box Transcription Factor, SIMADS1, Acts as a Negative Regulator of Fruit Ripening. Plant Physiology, 2013, 163, 1026-1036.	4.8	161
6	The abiotic stress-responsive NAC-type transcription factor SINAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Reports, 2014, 33, 1851-1863.	5 . 6	132
7	A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor). Plant Cell Reports, 2012, 31, 281-289.	5 . 6	122
8	Anthocyanin Accumulation and Molecular Analysis of Anthocyanin Biosynthesis-Associated Genes in Eggplant (<i>Solanum melongena</i> L.). Journal of Agricultural and Food Chemistry, 2014, 62, 2906-2912.	5.2	96
9	Anthocyanin Accumulation and Transcriptional Regulation of Anthocyanin Biosynthesis in Purple Bok Choy (<i>Brassica rapa</i> var. <i>chinensis</i>). Journal of Agricultural and Food Chemistry, 2014, 62, 12366-12376.	5.2	78
10	Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L Molecular Genetics and Genomics, 2012, 287, 39-54.	2.1	71
11	Overexpression of a novel MADS-box gene SIFYFL delays senescence, fruit ripening and abscission in tomato. Scientific Reports, 2014, 4, 4367.	3.3	69
12	Genome-Wide Analysis of the MADS-Box Transcription Factor Family in Solanum lycopersicum. International Journal of Molecular Sciences, 2019, 20, 2961.	4.1	69
13	Anthocyanin Accumulation and Molecular Analysis of Correlated Genes in Purple Kohlrabi (<i>Brassica oleracea</i> var. <i>gongylodes</i> L.). Journal of Agricultural and Food Chemistry, 2015, 63, 4160-4169.	5.2	65
14	SIDEAD31, a Putative DEAD-Box RNA Helicase Gene, Regulates Salt and Drought Tolerance and Stress-Related Genes in Tomato. PLoS ONE, 2015, 10, e0133849.	2. 5	63
15	Constitutive expression of EIL-like transcription factor partially restores ripening in the ethylene-insensitive Nr tomato mutant. Journal of Experimental Botany, 2004, 55, 1491-1497.	4.8	59
16	Differential regulation of tomato ethylene responsive factor LeERF3b, a putative repressor, and the activator Pti4 in ripening mutants and in response to environmental stresses. Journal of Plant Physiology, 2008, 165, 662-670.	3 . 5	58
17	The Jasmonate ZIM-domain protein gene SIJAZ2 regulates plant morphology and accelerates flower initiation in Solanum lycopersicum plants. Plant Science, 2018, 267, 65-73.	3.6	57
18	Overexpression of SIPRE2, an atypical bHLH transcription factor, affects plant morphology and fruit pigment accumulation in tomato. Scientific Reports, 2017, 7, 5786.	3.3	56

#	Article	IF	CITATIONS
19	Solanum lycopersicum agamous-like MADS-box protein AGL15-like gene, SIMBP11, confers salt stress tolerance. Molecular Breeding, 2016, 36, 1.	2.1	55
20	Tomato (Solanum lycopersicum) MADS-box transcription factor SIMBP8 regulates drought, salt tolerance and stress-related genes. Plant Growth Regulation, 2017, 83, 55-68.	3.4	53
21	Accumulation and Molecular Regulation of Anthocyanin in Purple Tumorous Stem Mustard (<i>Brassica juncea</i> var. <i>tumida</i> Tsen et Lee). Journal of Agricultural and Food Chemistry, 2014, 62, 7813-7821.	5.2	52
22	A tomato MADS-box protein, SICMB1, regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening. Scientific Reports, 2018, 8, 3413.	3.3	49
23	A histone deacetylase gene, SIHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. Plant Cell Reports, 2018, 37, 125-135.	5.6	48
24	Silencing of histone deacetylase SIHDT3 delays fruit ripening and suppresses carotenoid accumulation in tomato. Plant Science, 2017, 265, 29-38.	3.6	47
25	Anthocyanin Accumulation and Transcriptional Regulation of Anthocyanin Biosynthesis in Purple Pepper. Journal of Agricultural and Food Chemistry, 2020, 68, 12152-12163.	5.2	47
26	Cold stress improves the production of artemisinin depending on the increase in endogenous jasmonate. Biotechnology and Applied Biochemistry, 2017, 64, 305-314.	3.1	45
27	Suppression of the MADS-box gene SIMBP8 accelerates fruit ripening of tomato (Solanum) Tj ETQq1 1 0.78431	4 rgBT /Ov	verlągk 10 Tf
28	The abiotic stress-responsive NAC transcription factor SINAC11 is involved in drought and salt response in tomato (Solanum lycopersicum L.). Plant Cell, Tissue and Organ Culture, 2017, 129, 161-174.	2.3	43
29	The SIFSR gene controls fruit shelf-life in tomato. Journal of Experimental Botany, 2018, 69, 2897-2909.	4.8	43
30	The bHLH transcription factor SIPRE2 regulates tomato fruit development and modulates plant response to gibberellin. Plant Cell Reports, 2019, 38, 1053-1064.	5.6	43
31	Overexpression of the Tomato 13-Lipoxygenase Gene TomloxD Increases Generation of Endogenous Jasmonic Acid and Resistance to Cladosporium fulvum and High Temperature. Plant Molecular Biology Reporter, 2013, 31, 1141-1149.	1.8	38
32	An AGAMOUS MADS-box protein, SIMBP3, regulates the speed of placenta liquefaction and controls seed formation in tomato. Journal of Experimental Botany, 2019, 70, 909-924.	4.8	38
33	Genetically engineered anthocyanin pathway for high health-promoting pigment production in eggplant. Molecular Breeding, 2016, 36, 1 .	2.1	37
34	The MADS-box gene SIMBP11 regulates plant architecture and affects reproductive development in tomato plants. Plant Science, 2017, 258, 90-101.	3.6	36
35	The tomato histone deacetylase SIHDA1 contributes to the repression of fruit ripening and carotenoid accumulation. Scientific Reports, 2017, 7, 7930.	3.3	33
36	Metabolic and molecular analysis of nonuniform anthocyanin pigmentation in tomato fruit under high light. Horticulture Research, 2019, 6, 56.	6.3	29

#	Article	IF	CITATIONS
37	A Non-Climacteric Fruit Gene CaMADS-RIN Regulates Fruit Ripening and Ethylene Biosynthesis in Climacteric Fruit. PLoS ONE, 2014, 9, e95559.	2.5	28
38	Molecular Characterization of Six Tissue-Specific or Stress-Inducible Genes of NAC Transcription Factor Family in Tomato (Solanum lycopersicum). Journal of Plant Growth Regulation, 2014, 33, 730-744.	5.1	27
39	Tomato lipoxygenase D involved in the biosynthesis of jasmonic acid and tolerance to abiotic and biotic stress in tomato. Plant Biotechnology Reports, 2015, 9, 37-45.	1.5	27
40	The basic helix-loop-helix transcription factor bHLH95 affects fruit ripening and multiple metabolisms in tomato. Journal of Experimental Botany, 2020, 71, 6311-6327.	4.8	27
41	Manipulation of plant architecture and ï¬,owering time by down-regulation of the GRAS transcription factor SIGRAS26 in Solanum lycopersicum. Plant Science, 2018, 271, 81-93.	3.6	25
42	Suppression of a tomato SEPALLATA MADS-box gene, SICMB1, generates altered inflorescence architecture and enlarged sepals. Plant Science, 2018, 272, 75-87.	3.6	24
43	Biochemical and molecular analysis of a temperature-sensitive albino mutant in kale named "White Dove― Plant Growth Regulation, 2013, 71, 281-294.	3.4	23
44	Silencing SIAGL6, a tomato AGAMOUS-LIKE6 lineage gene, generates fused sepal and green petal. Plant Cell Reports, 2017, 36, 959-969.	5. 6	23
45	Anthocyanin composition and expression analysis of anthocyanin biosynthetic genes in kidney bean pod. Plant Physiology and Biochemistry, 2015, 97, 304-312.	5.8	22
46	The tomato floral homeotic protein FBP1-like gene, SIGLO1, plays key roles in petal and stamen development. Scientific Reports, 2016, 6, 20454.	3.3	22
47	Anthocyanins and flavonols are responsible for purple color of Lablab purpureus (L.) sweet pods. Plant Physiology and Biochemistry, 2016, 103, 183-190.	5.8	22
48	Overexpression of SIOFP20 affects floral organ and pollen development. Horticulture Research, 2019, 6, 125.	6.3	22
49	Overexpression of SIOFP20 in Tomato Affects Plant Growth, Chlorophyll Accumulation, and Leaf Senescence. Frontiers in Plant Science, 2019, 10, 1510.	3.6	22
50	Heterologous Expression of BoPAP1 in Tomato Induces Stamen Specific Anthocyanin Accumulation and Enhances Tolerance to a Long-Term Low Temperature Stress. Journal of Plant Growth Regulation, 2014, 33, 757-768.	5.1	19
51	Silencing SIELP2L, a tomato Elongator complex protein 2-like gene, inhibits leaf growth, accelerates leaf, sepal senescence and produces dark-green fruit. Scientific Reports, 2015, 5, 7693.	3.3	19
52	Silencing of SIHB2 Improves Drought, Salt Stress Tolerance, and Induces Stress-Related Gene Expression in Tomato. Journal of Plant Growth Regulation, 2017, 36, 578-589.	5.1	19
53	Suppression of SIMBP15 Inhibits Plant Vegetative Growth and Delays Fruit Ripening in Tomato. Frontiers in Plant Science, 2018, 9, 938.	3.6	19
54	Accumulation of Anthocyanin and Its Associated Gene Expression in Purple Tumorous Stem Mustard (<i>Brassica juncea</i> var. <i>tumida</i> Tsen et Lee) Sprouts When Exposed to Light, Dark, Sugar, and Methyl Jasmonate. Journal of Agricultural and Food Chemistry, 2019, 67, 856-866.	5.2	19

#	Article	IF	CITATIONS
55	Silencing SIGID2, a putative F-box protein gene, generates a dwarf plant and dark-green leaves in tomato. Plant Physiology and Biochemistry, 2016, 109, 491-501.	5.8	16
56	Molecular Characterization of Nine Tissue-Specific or Stress-Responsive Genes of Histone Deacetylase in Tomato (Solanum lycopersicum). Journal of Plant Growth Regulation, 2017, 36, 566-577.	5.1	16
57	Cloning and characterization of the EIN2-homology gene LeEIN2 from tomato. DNA Sequence, 2007, 18, 33-38.	0.7	15
58	Overexpression of SIMBP22 in Tomato Affects Plant Growth and Enhances Tolerance to Drought Stress. Plant Science, 2020, 301, 110672.	3.6	15
59	Suppression of a hexokinase gene, SlHXK1, leads to accelerated leaf senescence and stunted plant growth in tomato. Plant Science, 2020, 298, 110544.	3.6	15
60	The tomato MADS-box gene SIMBP9 negatively regulates lateral root formation and apical dominance by reducing auxin biosynthesis and transport. Plant Cell Reports, 2019, 38, 951-963.	5.6	14
61	Silencing of SIMYB55 affects plant flowering and enhances tolerance to drought and salt stress in tomato. Plant Science, 2022, 316, 111166.	3.6	14
62	The AP2/ERF transcription factor SIERF.F5 functions in leaf senescence in tomato. Plant Cell Reports, 2022, 41, 1181-1195.	5.6	14
63	Dual silencing of DmCPD and DmGA20ox genes generates a novel miniature and delayed-flowering Dendranthema morifolium variety. Molecular Breeding, 2015, 35, 1.	2.1	13
64	SIHDA5, a Tomato Histone Deacetylase Gene, Is Involved in Responding to Salt, Drought, and ABA. Plant Molecular Biology Reporter, 2018, 36, 36-44.	1.8	13
65	Silencing SIMED18, tomato Mediator subunit 18 gene, restricts internode elongation and leaf expansion. Scientific Reports, 2018, 8, 3285.	3.3	12
66	New insight into the pigment composition and molecular mechanism of flower coloration in tulip (Tulipa gesneriana L.) cultivars with various petal colors. Plant Science, 2022, 317, 111193.	3.6	12
67	A powerful hybrid puc operon promoter tightly regulated by both IPTG and low oxygen level. Biochemistry (Moscow), 2010, 75, 519-525.	1.5	11
68	Overexpression of SIPRE5, an atypical bHLH transcription factor, affects plant morphology and chlorophyll accumulation in tomato. Journal of Plant Physiology, 2022, 273, 153698.	3.5	11
69	Quantitative prediction of the thermal motion and intrinsic disorder of protein cofactors in crystalline state: A case study on halide anions. Journal of Theoretical Biology, 2010, 266, 291-298.	1.7	10
70	Genome-Wide Identification, Classification and Expression Analysis of m6A Gene Family in Solanum lycopersicum. International Journal of Molecular Sciences, 2022, 23, 4522.	4.1	9
71	AIM: a comprehensive Arabidopsis interactome module database and related interologs in plants. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau117.	3.0	8
72	Isolation of the brassinosteroid receptor genes and recharacterization of dwarf plants by silencing of SIBRI1 in tomato. Plant Growth Regulation, 2019, 89, 59-71.	3.4	7

#	Article	IF	CITATIONS
70	Novel Translational and Phosphorylation Modification Regulation Mechanisms of Tomato (Solanum) Tj ETQq		rgBT /Overlo
73	International Journal of Molecular Sciences, 2021, 22, 11782.	4.1	7
74	Simultaneous Silencing of Five Lipoxygenase Genes Increases the Contents of \hat{l} ±-Linolenic and Linoleic Acids in Tomato ($\langle i \rangle$ Solanum lycopersicum $\langle i \rangle$ L.) Fruits. Journal of Agricultural and Food Chemistry, 2014, 62, 11988-11993.	5.2	6
75	Molecular and Phylogenetic Analyses of the Mediator Subunit Genes in Solanum lycopersicum. Frontiers in Genetics, 2019, 10, 1222.	2.3	6
76	Heterologous synthesis and assembly of functional LHII antenna complexes from Rhodovulum sulfidophilum in Rhodobacter sphaeroides mutant. Molecular Biology Reports, 2009, 36, 1695-1702.	2.3	5
77	Overexpression of SIUPA-like induces cell enlargement, aberrant development and low stress tolerance through phytohormonal pathway in tomato. Scientific Reports, 2016, 6, 23818.	3.3	5
78	SIJAZ10 and SIJAZ11 mediate dark-induced leaf senescence and regeneration. PLoS Genetics, 2022, 18, e1010285.	3.5	5
79	High human GLUT1, GLUT2, and GLUT3 expression in Schizosaccharomyces pombe. Biochemistry (Moscow), 2009, 74, 75-80.	1.5	4
80	Jointly silencing BoDWARF, BoGA20ox and BoSP (SELF-PRUNING) produces a novel miniature ornamental Brassica oleracea var. acephala f. tricolor variety. Molecular Breeding, 2014, 34, 99-113.	2.1	4
81	A novel E6-like gene, E6-2, affects fruit ripening in tomato. Plant Science, 2021, 313, 111066.	3.6	4
82	SIMBP22 overexpression in tomato affects flower morphology and fruit development. Journal of Plant Physiology, 2022, 272, 153687.	3.5	4
83	Applying Novel Threeâ€Dimensional Holographic Vector of Atomic Interaction Field to QSAR Studies of Artemisinin Derivatives. QSAR and Combinatorial Science, 2008, 27, 198-207.	1.4	3
84	Transgenic pepper plants carrying RNA interference constructs of CaCOI1 gene show severe abnormality. Molecular Breeding, 2013, 31, 971-979.	2.1	3
85	SICHYR1, a RING and CHY zinc finger domain-containing protein, promotes tomato fruit ripening by reprograming abscisic acid and ethylene signaling. Scientia Horticulturae, 2022, 296, 110900.	3.6	3
86	Characteristics of light-harvesting complex II mutant of Rhodobacter sphaeroides with alterations at the transmembrane helices of \hat{l}^2 -subunit. Biochemistry (Moscow), 2009, 74, 807-812.	1.5	2
87	The Wettability and Topography of Self-Assembled Protein Monolayer Linked by Alkanethiols. , 2009, , .		2
88	Silencing of the MADS-Box Gene SIMADS83 Enhances Adventitious Root Formation in Tomato Plants. Journal of Plant Growth Regulation, 2020, 39, 941-953.	5.1	2
89	Functional analysis of tomato LeEIL1 in an Arabidopsis ein2 mutant. Acta Physiologiae Plantarum, 2011, 33, 489-496.	2.1	1
90	Knockout of SIALKBH2 weakens the DNA damage repair ability of tomato. Plant Science, 2022, 319, 111266.	3.6	1

#	Article	IF	CITATIONS
91	Physiological, biochemical, and molecular differences in chloroplast synthesis between leaf and corolla of cabbage (Brassica rapa L. var. chinensis) and rapeseed (Brassica napus L.). Plant Growth Regulation, 2017, 82, 91-101.	3.4	0