Ivan Äikić

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1512551/publications.pdf

Version: 2024-02-01

310 papers 54,333 citations

105 h-index 223 g-index

343 all docs 343 docs citations

343 times ranked

56751 citing authors

#	Article	IF	Citations
1	A guide to the regulation of selective autophagy receptors. FEBS Journal, 2022, 289, 75-89.	2.2	95
2	BAG3 is a negative regulator of ciliogenesis in glioblastoma and tripleâ€negative breast cancer cells. Journal of Cellular Biochemistry, 2022, 123, 77-90.	1.2	8
3	Inhibition of USP28 overcomes Cisplatin-resistance of squamous tumors by suppression of the Fanconi anemia pathway. Cell Death and Differentiation, 2022, 29, 568-584.	5.0	16
4	pVHL-mediated SMAD3 degradation suppresses TGF-β signaling. Journal of Cell Biology, 2022, 221, .	2.3	11
5	Targeted protein degradation: from small molecules to complex organelles—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2022, 1510, 79-99.	1.8	5
6	Ubiquitin and Legionella: From bench to bedside. Seminars in Cell and Developmental Biology, 2022, 132, 230-241.	2.3	14
7	USP28 enables oncogenic transformation of respiratory cells, and its inhibition potentiates molecular therapy targeting mutant EGFR, BRAF and PI3K. Molecular Oncology, 2022, 16, 3082-3106.	2.1	4
8	ER remodeling via ER-phagy. Molecular Cell, 2022, 82, 1492-1500.	4.5	38
9	Development of ADPribosyl Ubiquitin Analogues to Study Enzymes Involved in Legionella Infection. Chemistry - A European Journal, 2021, 27, 2506-2512.	1.7	7
10	Outer membrane vesicles containing OmpA induce mitochondrial fragmentation to promote pathogenesis of Acinetobacter baumannii. Scientific Reports, 2021, 11, 618.	1.6	52
11	The Kinase Chemogenomic Set (KCGS): An Open Science Resource for Kinase Vulnerability Identification. International Journal of Molecular Sciences, 2021, 22, 566.	1.8	62
12	FAM134B-RHD Protein Clustering Drives Spontaneous Budding of Asymmetric Membranes. Journal of Physical Chemistry Letters, 2021, 12, 1926-1931.	2.1	16
13	The endolysosomal adaptor PLEKHM1 is a direct target for both mTOR and MAPK pathways. FEBS Letters, 2021, 595, 864-880.	1.3	5
14	Simeprevir Potently Suppresses SARS-CoV-2 Replication and Synergizes with Remdesivir. ACS Central Science, 2021, 7, 792-802.	5.3	59
15	SIK2 orchestrates actin-dependent host response upon Salmonella infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2024144118.	3.3	10
16	Minimized combinatorial CRISPR screens identify genetic interactions in autophagy. Nucleic Acids Research, 2021, 49, 5684-5704.	6.5	31
17	Multiplexed proteomics of autophagy-deficient murine macrophages reveals enhanced antimicrobial immunity via the oxidative stress response. ELife, $2021,10,10$	2.8	10
18	Autophagy: Instructions from the extracellular matrix. Matrix Biology, 2021, 100-101, 1-8.	1.5	17

#	Article	IF	CITATIONS
19	Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. Cell Chemical Biology, 2021, 28, 1014-1031.	2.5	62
20	Calcitriol Promotes Differentiation of Glioma Stem-Like Cells and Increases Their Susceptibility to Temozolomide. Cancers, 2021, 13, 3577.	1.7	12
21	RUFY4 exists as two translationally regulated isoforms, that localize to the mitochondrion in activated macrophages. Royal Society Open Science, 2021, 8, 202333.	1.1	3
22	Serine-ubiquitination regulates Golgi morphology and the secretory pathway upon Legionella infection. Cell Death and Differentiation, 2021, 28, 2957-2969.	5.0	23
23	Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies. PLoS ONE, 2021, 16, e0253364.	1.1	55
24	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	3.5	615
25	Famotidine inhibits toll-like receptor 3-mediated inflammatory signaling in SARS-CoV-2 infection. Journal of Biological Chemistry, 2021, 297, 100925.	1.6	43
26	Gasdermin B in the host–pathogen tug-of-war. Cell Research, 2021, 31, 1043-1044.	5.7	0
27	OTULIN inhibits RIPK1-mediated keratinocyte necroptosis to prevent skin inflammation in mice. Nature Communications, 2021, 12, 5912.	5 . 8	28
28	USP28: Oncogene or Tumor Suppressor? A Unifying Paradigm for Squamous Cell Carcinoma. Cells, 2021, 10, 2652.	1.8	18
29	An atypical LIR motif within UBA5 (ubiquitin like modifier activating enzyme 5) interacts with GABARAP proteins and mediates membrane localization of UBA5. Autophagy, 2020, 16, 256-270.	4.3	41
30	Regulation of Phosphoribosyl-Linked Serine Ubiquitination by Deubiquitinases DupA and DupB. Molecular Cell, 2020, 77, 164-179.e6.	4.5	91
31	ER-phagy and human diseases. Cell Death and Differentiation, 2020, 27, 833-842.	5.0	72
32	Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature, 2020, 587, 657-662.	13.7	818
33	Discovery of Protein-Protein Interaction Inhibitors by Integrating Protein Engineering and Chemical Screening Platforms. Cell Chemical Biology, 2020, 27, 1441-1451.e7.	2.5	13
34	MiT/ <scp>TFE</scp> factors control <scp>ER</scp> â€phagy via transcriptional regulation of <scp>FAM</scp> 134B. EMBO Journal, 2020, 39, e105696.	3.5	60
35	TBK1â€mediated phosphorylation of LC3C and GABARAP‣2 controls autophagosome shedding by ATG4 protease. EMBO Reports, 2020, 21, e48317.	2.0	58
36	Synthesis of Stable NAD + Mimics as Inhibitors for the Legionella pneumophila Phosphoribosyl Ubiquitylating Enzyme SdeC. ChemBioChem, 2020, 21, 2903-2907.	1.3	6

#	Article	IF	Citations
37	Wss1 Promotes Replication Stress Tolerance by Degrading Histones. Cell Reports, 2020, 30, 3117-3126.e4.	2.9	14
38	Single-molecule imaging reveals the oligomeric state of functional TNF $\hat{l}\pm$ -induced plasma membrane TNFR1 clusters in cells. Science Signaling, 2020, 13, .	1.6	67
39	Disrupting the LC3 Interaction Region (LIR) Binding of Selective Autophagy Receptors Sensitizes AML Cell Lines to Cytarabine. Frontiers in Cell and Developmental Biology, 2020, 8, 208.	1.8	17
40	Bacterial OTU deubiquitinases regulate substrate ubiquitination upon Legionella infection. ELife, 2020, 9, .	2.8	23
41	Inhibition of bacterial ubiquitin ligases by SidJ–calmodulin catalysed glutamylation. Nature, 2019, 572, 382-386.	13.7	98
42	CYRI/FAM49B negatively regulates RAC1-driven cytoskeletal remodelling and protects against bacterial infection. Nature Microbiology, 2019, 4, 1516-1531.	5.9	37
43	Molecular Recognition of M1-Linked Ubiquitin Chains by Native and Phosphorylated UBAN Domains. Journal of Molecular Biology, 2019, 431, 3146-3156.	2.0	20
44	Cellular quality control by the ubiquitin-proteasome system and autophagy. Science, 2019, 366, 818-822.	6.0	633
45	The next decade of metabolism. Nature Metabolism, 2019, 1, 2-4.	5.1	8
46	Biglycan evokes autophagy in macrophages via aÂnovel CD44/Toll-like receptor 4 signaling axisÂinÂischemia/reperfusion injury. Kidney International, 2019, 95, 540-562.	2.6	78
47	Visualizing ubiquitination in mammalian cells. EMBO Reports, 2019, 20, .	2.0	73
48	Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy. Nature Communications, 2019, 10, 2370.	5.8	147
49	NIPSNAP Beacons in Mitophagy. Developmental Cell, 2019, 49, 503-505.	3.1	2
50	RNA binding to p62 impacts selective autophagy. Cell Research, 2019, 29, 512-513.	5.7	2
51	Autophagy without conjugation. Nature Structural and Molecular Biology, 2019, 26, 249-250.	3.6	1
52	Arsenic Trioxide and (\hat{a}°)-Gossypol Synergistically Target Glioma Stem-Like Cells via Inhibition of Hedgehog and Notch Signaling. Cancers, 2019, 11, 350.	1.7	29
53	A selective <scp>ER</scp> â€phagy exerts procollagen quality control via a Calnexin― <scp>FAM</scp> 134B complex. EMBO Journal, 2019, 38, .	3.5	178
54	Quantitative Phosphoproteomics of Selective Autophagy Receptors. Methods in Molecular Biology, 2019, 1880, 691-701.	0.4	3

#	Article	IF	CITATIONS
55	Loss of the selective autophagy receptor p62 impairs murine myeloid leukemia progression and mitophagy. Blood, 2019, 133, 168-179.	0.6	83
56	Circular synthesized CRISPR/Cas gRNAs for functional interrogations in the coding and noncoding genome. ELife, 2019, 8, .	2.8	34
57	Endoplasmic reticulum turnover via selective autophagy. FASEB Journal, 2019, 33, 90.1.	0.2	O
58	A General Approach Towards Triazoleâ€Linked Adenosine Diphosphate Ribosylated Peptides and Proteins. Angewandte Chemie, 2018, 130, 1675-1678.	1.6	4
59	BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells. Neoplasia, 2018, 20, 263-279.	2.3	71
60	Mechanism and medical implications of mammalian autophagy. Nature Reviews Molecular Cell Biology, 2018, 19, 349-364.	16.1	1,933
61	Hitchhiking on selective autophagy. Nature Cell Biology, 2018, 20, 122-124.	4.6	14
62	Chain Assembly and Disassembly Processes Differently Affect the Conformational Space of Ubiquitin Chains. Structure, 2018, 26, 249-258.e4.	1.6	16
63	Heterotypic Ubiquitin Chains: Seeing is Believing. Trends in Cell Biology, 2018, 28, 1-3.	3.6	11
64	Ubiquitin signaling and autophagy. Journal of Biological Chemistry, 2018, 293, 5404-5413.	1.6	230
65	A General Approach Towards Triazoleâ€Linked Adenosine Diphosphate Ribosylated Peptides and Proteins. Angewandte Chemie - International Edition, 2018, 57, 1659-1662.	7.2	21
66	Regulation of Salmonella-host cell interactions via the ubiquitin system. International Journal of Medical Microbiology, 2018, 308, 176-184.	1.5	30
67	Dimerization quality control via ubiquitylation. Science, 2018, 362, 151-152.	6.0	4
68	Open questions: why should we care about ER-phagy and ER remodelling?. BMC Biology, 2018, 16, 131.	1.7	36
69	ER-phagy at a glance. Journal of Cell Science, 2018, 131, .	1.2	154
70	Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination. Nature, 2018, 557, 734-738.	13.7	84
71	Elusive mitochondrial connection to inflammation uncovered. Nature, 2018, 561, 185-186.	13.7	1
72	IKKα controls ATG16L1 degradation to prevent ER stress during inflammation. Journal of Experimental Medicine, 2017, 214, 423-437.	4.2	55

#	Article	IF	CITATIONS
73	Structural basis for the recognition and degradation of host TRIM proteins by Salmonella effector SopA. Nature Communications, 2017, 8, 14004.	5.8	48
74	Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins. Scientific Reports, 2017, 7, 1131.	1.6	203
75	Linear ubiquitination of cytosolic Salmonella Typhimurium activates NF-κB and restricts bacterial proliferation. Nature Microbiology, 2017, 2, 17066.	5.9	145
76	Proteasomal and Autophagic Degradation Systems. Annual Review of Biochemistry, 2017, 86, 193-224.	5.0	800
77	Bromodomain Protein BRD4 Is a Transcriptional Repressor of Autophagy and Lysosomal Function. Molecular Cell, 2017, 66, 517-532.e9.	4.5	196
78	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	3.5	1,230
79	Flow Cytometer Monitoring of Bnip3- and Bnip3L/Nix-Dependent Mitophagy. Methods in Molecular Biology, 2017, 1759, 105-110.	0.4	9
80	Ubiquitylation of p62/sequestosome1 activates its autophagy receptor function and controls selective autophagy upon ubiquitin stress. Cell Research, 2017, 27, 657-674.	5.7	143
81	Fluorescenceâ€based <scp>ATG</scp> 8 sensors monitor localization and function of <scp>LC</scp> 3/ <scp>GABARAP</scp> proteins. EMBO Journal, 2017, 36, 549-564.	3.5	49
82	Removing the waste bags: how p97 drives autophagy of lysosomes. EMBO Journal, 2017, 36, 129-131.	3.5	9
83	Maternal prolactin during late pregnancy is important in generating nurturing behavior in the offspring. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13042-13047.	3.3	26
84	Structural and functional analysis of the GABARAP interaction motif (GIM). EMBO Reports, 2017, 18, 1382-1396.	2.0	129
85	Multiplex image-based autophagy RNAi screening identifies SMCR8 as ULK1 kinase activity and gene expression regulator. ELife, 2017, 6, .	2.8	70
86	Full length RTN3 regulates turnover of tubular endoplasmic reticulum via selective autophagy. ELife, 2017, 6, .	2.8	319
87	Editorial: Ubiquitin and Ubiquitin-Relative SUMO in DNA Damage Response. Frontiers in Genetics, 2017, 8, 188.	1.1	3
88	Manatee invariants reveal functional pathways in signaling networks. BMC Systems Biology, 2017, 11, 72.	3.0	9
89	SPRTN is a mammalian DNA-binding metalloprotease that resolves DNA-protein crosslinks. ELife, 2016, 5,	2.8	123
90	In Silico Knockout Studies of Xenophagic Capturing of Salmonella. PLoS Computational Biology, 2016, 12, e1005200.	1.5	24

#	Article	IF	CITATIONS
91	Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination. Cell, 2016, 167, 1636-1649.e13.	13.5	234
92	Autophagy Captures the Nobel Prize. Cell, 2016, 167, 1433-1435.	13.5	55
93	Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4039-4044.	3.3	554
94	Global Analysis of Host and Bacterial Ubiquitinome in Response to Salmonella Typhimurium Infection. Molecular Cell, 2016, 62, 967-981.	4.5	99
95	Editorial overview: Cell regulation. Current Opinion in Cell Biology, 2016, 39, iv-vi.	2.6	0
96	Ubiquitination without E1 and E2 enzymes. Nature, 2016, 533, 43-44.	13.7	24
97	Structural and Functional Analysis of a Novel Interaction Motif within UFM1-activating Enzyme 5 (UBA5) Required for Binding to Ubiquitin-like Proteins and Ufmylation. Journal of Biological Chemistry, 2016, 291, 9025-9041.	1.6	69
98	Common Molecular Pathways in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Trends in Molecular Medicine, 2016, 22, 769-783.	3.5	103
99	CIN85 Deficiency Prevents Nephrin Endocytosis and Proteinuria in Diabetes. Diabetes, 2016, 65, 3667-3679.	0.3	42
100	How the proteasome is degraded. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13266-13268.	3.3	14
101	A novel mode of ubiquitin recognition by the ubiquitinâ€binding zinc finger domain of <scp>WRNIP</scp> 1. FEBS Journal, 2016, 283, 2004-2017.	2.2	11
102	Autophagy and modular restructuring of metabolism control germline tumor differentiation and proliferation in <i>C. elegans</i> . Autophagy, 2016, 12, 529-546.	4.3	25
103	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
104	An Essential Role for SHARPIN in the Regulation of Caspase 1 Activity in Sepsis. American Journal of Pathology, 2016, 186, 1206-1220.	1.9	28
105	Bacteria-host relationship: ubiquitin ligases as weapons of invasion. Cell Research, 2016, 26, 499-510.	5.7	95
106	Ubiquitin chain diversity at a glance. Journal of Cell Science, 2016, 129, 875-80.	1.2	347
107	Expanding the Ubiquitin Code. Cell, 2016, 164, 1074-1074.e1.	13.5	41
108	Ubiquitin-Dependent And Independent Signals In Selective Autophagy. Trends in Cell Biology, 2016, 26, 6-16.	3.6	577

#	Article	IF	Citations
109	Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget, 2016, 7, 20016-20032.	0.8	32
110	Expanding the ubiquitin code through postâ€translational modification. EMBO Reports, 2015, 16, 1071-1083.	2.0	169
111	Regulation of endoplasmic reticulum turnover by selective autophagy. Nature, 2015, 522, 354-358.	13.7	714
112	PLEKHM1: Adapting to life at the lysosome. Autophagy, 2015, 11, 720-722.	4.3	23
113	Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nature Neuroscience, 2015, 18, 631-636.	7.1	652
114	SGTA binding to Rpn13 selectively modulates protein quality control. Journal of Cell Science, 2015, 128, 3187-96.	1.2	24
115	The integration of autophagy and cellular trafficking pathways via RAB GAPs. Autophagy, 2015, 11, 2393-2397.	4.3	39
116	PLEKHM1 Regulates Autophagosome-Lysosome Fusion through HOPS Complex and LC3/GABARAP Proteins. Molecular Cell, 2015, 57, 39-54.	4.5	448
117	PLEKHM1 Regulates Salmonella-Containing Vacuole Biogenesis and Infection. Cell Host and Microbe, 2015, 17, 58-71.	5.1	89
118	RAB3GAP1 and RAB3GAP2 modulate basal and rapamycin-induced autophagy. Autophagy, 2014, 10, 2297-2309.	4.3	79
119	Cullins Keep Autophagy under Control. Developmental Cell, 2014, 31, 675-676.	3.1	13
120	<scp>TBC</scp> 1 <scp>D</scp> 5 and the <scp>AP</scp> 2 complex regulate <scp>ATG</scp> 9 trafficking and initiation of autophagy. EMBO Reports, 2014, 15, 392-401.	2.0	146
121	Crystal Structure of a PCP/Sfp Complex Reveals the Structural Basis for Carrier Protein Posttranslational Modification. Chemistry and Biology, 2014, 21, 552-562.	6.2	37
122	Autophagy in Antimicrobial Immunity. Molecular Cell, 2014, 54, 224-233.	4.5	304
123	Deciphering Functions of Branched Ubiquitin Chains. Cell, 2014, 157, 767-769.	13.5	15
124	Ubiquitin-Dependent Sorting in Endocytosis. Cold Spring Harbor Perspectives in Biology, 2014, 6, a016808-a016808.	2.3	174
125	Cargo recognition and trafficking in selective autophagy. Nature Cell Biology, 2014, 16, 495-501.	4.6	997
126	The LC3 interactome at a glance. Journal of Cell Science, 2014, 127, 3-9.	1.2	240

#	Article	IF	CITATIONS
127	Ubiquitination in disease pathogenesis and treatment. Nature Medicine, 2014, 20, 1242-1253.	15.2	845
128	PINK1-PARKIN Interplay: Down to Ubiquitin Phosphorylation. Molecular Cell, 2014, 56, 341-342.	4.5	15
129	A peek into the atomic details of thalidomide's clinical effects. Nature Structural and Molecular Biology, 2014, 21, 739-740.	3.6	3
130	Germline Polymorphisms in <i>RNF31</i> Regulate Linear Ubiquitination and Oncogenic Signaling. Cancer Discovery, 2014, 4, 394-396.	7.7	8
131	<scp>DUB</scp> s counteract parkin for efficient mitophagy. EMBO Journal, 2014, 33, 2442-2443.	3.5	12
132	Mutations in SPRTN cause early onset hepatocellular carcinoma, genomic instability and progeroid features. Nature Genetics, 2014, 46, 1239-1244.	9.4	165
133	Binding of OTULIN to the PUB Domain of HOIP Controls NF-κB Signaling. Molecular Cell, 2014, 54, 349-361.	4.5	155
134	Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis. ELife, 2014, 3, .	2.8	151
135	Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. Journal of Cell Science, 2013, 126, 580-592.	1.2	268
136	Cullins Getting Undressed by the Protein Exchange Factor Cand 1. Cell, 2013, 153, 14-16.	13.5	5
137	Breaking the limits of artificial ubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17606-17607.	3.3	2
138	The TBC/RabGAP Armus Coordinates Rac1 and Rab7 Functions during Autophagy. Developmental Cell, 2013, 25, 15-28.	3.1	79
139	Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nature Methods, 2013, 10, 361-365.	9.0	409
140	Selective monitoring of ubiquitin signals with genetically encoded ubiquitin chain–specific sensors. Nature Protocols, 2013, 8, 1449-1458.	5.5	10
141	Structural basis for phosphorylation-triggered autophagic clearance of <i>Salmonella</i> Biochemical Journal, 2013, 454, 459-466.	1.7	92
142	Parkin promotes cell survival via linear ubiquitination. EMBO Journal, 2013, 32, 1072-1074.	3.5	5
143	Modulation of Serines 17 and 24 in the LC3-interacting Region of Bnip3 Determines Pro-survival Mitophagy versus Apoptosis. Journal of Biological Chemistry, 2013, 288, 1099-1113.	1.6	374
144	Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Nature, 2013, 503, 422-426.	13.7	174

#	Article	IF	CITATIONS
145	Efficient Enhancement of Signalling Capacity: The Ubiquitin System. , 2013, , 177-190.		2
146	Decoding Ubiquitin Networks in regulation of inflammation and autophagy. FASEB Journal, 2013, 27, .	0.2	0
147	A20 inhibits LUBAC-mediated NF- $\hat{\mathbb{P}}$ B activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO Journal, 2012, 31, 3845-3855.	3.5	176
148	The role of ubiquitylation in receptor endocytosis and endosomal sorting. Journal of Cell Science, 2012, 125, 265-275.	1.2	283
149	Structural Analysis of SHARPIN, a Subunit of a Large Multi-protein E3 Ubiquitin Ligase, Reveals a Novel Dimerization Function for the Pleckstrin Homology Superfold. Journal of Biological Chemistry, 2012, 287, 20823-20829.	1.6	28
150	Analysis of Nuclear Factor-κB (NF-κB) Essential Modulator (NEMO) Binding to Linear and Lysine-linked Ubiquitin Chains and Its Role in the Activation of NF-κB. Journal of Biological Chemistry, 2012, 287, 23626-23634.	1.6	86
151	Linear Ubiquitination of NEMO Negatively Regulates the Interferon Antiviral Response through Disruption of the MAVS-TRAF3 Complex. Cell Host and Microbe, 2012, 12, 211-222.	5.1	101
152	Ubiquitin-Binding Proteins: Decoders of Ubiquitin-Mediated Cellular Functions. Annual Review of Biochemistry, 2012, 81, 291-322.	5.0	643
153	Rab GTPase-Activating Proteins in Autophagy: Regulation of Endocytic and Autophagy Pathways by Direct Binding to Human ATG8 Modifiers. Molecular and Cellular Biology, 2012, 32, 1733-1744.	1.1	161
154	Fighting mycobacteria through ISGylation. EMBO Reports, 2012, 13, 872-873.	2.0	5
155	Selectivity of the ubiquitinâ€binding modules. FEBS Letters, 2012, 586, 2705-2710.	1.3	36
156	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
157	Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nature Cell Biology, 2012, 14, 51-60.	4.6	171
158	Fluorescence-Based Sensors to Monitor Localization and Functions of Linear and K63-Linked Ubiquitin Chains in Cells. Molecular Cell, 2012, 47, 797-809.	4.5	137
159	Structure of a compact conformation of linear diubiquitin. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 102-108.	2.5	29
160	Ubiquitylation in immune disorders and cancer: from molecular mechanisms to therapeutic implications. EMBO Molecular Medicine, 2012, 4, 545-556.	3.3	42
161	A Universal Expression Tag for Structural and Functional Studies of Proteins. ChemBioChem, 2012, 13, 959-963.	1.3	38
162	Ivan Dikic. Current Biology, 2012, 22, R76-R77.	1.8	0

#	Article	IF	Citations
163	Ubiquitin ligases and beyond. BMC Biology, 2012, 10, 22.	1.7	37
164	Generation and physiological roles of linear ubiquitin chains. BMC Biology, 2012, 10, 23.	1.7	143
165	The molecular basis of selective autophagy. Biochemist, 2012, 34, 24-30.	0.2	2
166	Role of UbL Family Modifiers and Their Binding Proteins in Cell Signaling. Methods in Molecular Biology, 2012, 832, 163-171.	0.4	0
167	Healthy ageing through regulated proteostasis. EMBO Journal, 2011, 30, 2983-2985.	3.5	6
168	Phosphorylation of the Autophagy Receptor Optineurin Restricts <i>Salmonella </i> Growth. Science, 2011, 333, 228-233.	6.0	1,125
169	Ubiquitin networks in cancer. Current Opinion in Genetics and Development, 2011, 21, 21-28.	1.5	85
170	Characterization of the Interaction of GABARAPL-1 with the LIR Motif of NBR1. Journal of Molecular Biology, 2011, 410, 477-487.	2.0	86
171	The spatial and temporal organization of ubiquitin networks. Nature Reviews Molecular Cell Biology, 2011, 12, 295-307.	16.1	309
172	SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis. Nature, 2011, 471, 637-641.	13.7	655
173	The Three Musketeers of Autophagy: phosphorylation, ubiquitylation and acetylation. Trends in Cell Biology, 2011, 21, 195-201.	3.6	143
174	Shared and unique properties of ubiquitin and SUMO interaction networks in DNA repair. Genes and Development, 2011, 25, 1763-1769.	2.7	20
175	Mitophagy in yeast is independent of mitochondrial fission and requires the stress response gene <i>WHI2</i> . Journal of Cell Science, 2011, 124, 1339-1350.	1.2	147
176	Conformational flexibility and rotation of the RING domain in activation of cullin–RING ligases. Nature Structural and Molecular Biology, 2011, 18, 863-865.	3.6	1
177	Autophagy receptors in developmental clearance of mitochondria. Autophagy, 2011, 7, 301-303.	4.3	64
178	Selective Binding of Linear Ubiquitin Chains to NEMO in NF-kappaB Activation. Advances in Experimental Medicine and Biology, 2011, 691, 107-114.	0.8	6
179	Cindr Interacts with Anillin to Control Cytokinesis in Drosophila melanogaster. Current Biology, 2010, 20, 944-950.	1.8	50
180	Notch: Implications of endogenous inhibitors for therapy. BioEssays, 2010, 32, 481-487.	1.2	35

#	Article	IF	CITATIONS
181	Crystallization of small proteins assisted by green fluorescent protein. Acta Crystallographica Section D: Biological Crystallography, 2010, 66, 1059-1066.	2.5	31
182	Post-translational modifications in signal integration. Nature Structural and Molecular Biology, 2010, 17, 666-672.	3.6	658
183	CIN85 regulates dopamine receptor endocytosis and governs behaviour in mice. EMBO Journal, 2010, 29, 2421-2432.	3.5	34
184	Spatial organization of transmembrane receptor signalling. EMBO Journal, 2010, 29, 2677-2688.	3.5	115
185	Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Reports, 2010, 11, 45-51.	2.0	1,045
186	Mitochondria get a Parkin' ticket. Nature Cell Biology, 2010, 12, 104-106.	4.6	53
187	Selective Autophagy in Cancer Development and Therapy. Cancer Research, 2010, 70, 3431-3434.	0.4	196
188	The phosphatase and tensin homolog regulates epidermal growth factor receptor (EGFR) inhibitor response by targeting EGFR for degradation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6459-6464.	3.3	99
189	Unconventional Ubiquitin Recognition by the Ubiquitin-Binding Motif within the Y Family DNA Polymerases \hat{l}^1 and Rev1. Molecular Cell, 2010, 37, 408-417.	4.5	68
190	Regulation of Translesion Synthesis DNA Polymerase $\hat{\textbf{l}}\cdot$ by Monoubiquitination. Molecular Cell, 2010, 37, 396-407.	4.5	148
191	Not All Autophagy Membranes Are Created Equal. Cell, 2010, 141, 564-566.	13.5	20
192	What Determines the Specificity and Outcomes of Ubiquitin Signaling?. Cell, 2010, 143, 677-681.	13.5	146
193	Receptor Tyrosine Kinase Signaling and Ubiquitination. , 2010, , 517-520.		0
194	Ubiquitin ligase complexes: from substrate selectivity to conjugational specificity. Biological Chemistry, 2010, 391, 163-169.	1.2	78
195	Regulation of Ubiquitin Receptors by Coupled Monoubiquitination. Sub-Cellular Biochemistry, 2010, 54, 31-40.	1.0	14
196	Ubiquitin and Autophagy Networks. FASEB Journal, 2010, 24, 407.1.	0.2	0
197	Ubiquitin-binding motif of human DNA polymerase î· is required for correct localization: Fig. 1 Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, E20-E20.	3.3	25
198	Caspase-8 Is Involved in Neovascularization-Promoting Progenitor Cell Functions. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 571-578.	1.1	26

#	Article	IF	Citations
199	NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle, 2009, 8, 1986-1990.	1.3	399
200	The Ataxia (axJ) Mutation Causes Abnormal GABAA Receptor Turnover in Mice. PLoS Genetics, 2009, 5, e1000631.	1.5	37
201	Regulation of Epidermal Growth Factor Receptor Trafficking by Lysine Deacetylase HDAC6. Science Signaling, 2009, 2, ra84.	1.6	140
202	Targeting the ubiquitin system in cancer therapy. Nature, 2009, 458, 438-444.	13.7	525
203	Epidermal growth factor-like domain 7 (EGFL7) modulates Notch signalling and affects neural stem cell renewal. Nature Cell Biology, 2009, 11 , 873-880.	4.6	132
204	A new ubiquitin chain, a new signal. Nature Reviews Molecular Cell Biology, 2009, 10, 306-306.	16.1	5
205	Ubiquitin-binding domains — from structures to functions. Nature Reviews Molecular Cell Biology, 2009, 10, 659-671.	16.1	724
206	Ubiquitin linkages make a difference. Nature Structural and Molecular Biology, 2009, 16, 1209-1210.	3.6	25
207	Functional Roles of Ubiquitin-Like Domain (ULD) and Ubiquitin-Binding Domain (UBD) Containing Proteins. Chemical Reviews, 2009, 109, 1481-1494.	23.0	101
208	Specific Recognition of Linear Ubiquitin Chains by NEMO Is Important for NF-κB Activation. Cell, 2009, 136, 1098-1109.	13.5	667
209	A Role for NBR1 in Autophagosomal Degradation of Ubiquitinated Substrates. Molecular Cell, 2009, 33, 505-516.	4.5	974
210	A Role for Ubiquitin in Selective Autophagy. Molecular Cell, 2009, 34, 259-269.	4.5	1,098
211	NBR1 co-operates with p62 in selective autophagy of ubiquitinated targets. Autophagy, 2009, 5, 732-733.	4.3	163
212	Inhibitors of apoptosis catch ubiquitin. Biochemical Journal, 2009, 417, e1-e3.	1.7	18
213	Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO Journal, 2008, 27, 629-641.	3.5	139
214	Atypical ubiquitin chains: new molecular signals. EMBO Reports, 2008, 9, 536-542.	2.0	764
215	Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature, 2008, 453, 548-552.	13.7	290
216	Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature, 2008, 453, 481-488.	13.7	553

#	Article	IF	Citations
217	Reply to "The binding stoichiometry of CIN85 SH3 domain A and Cbl-b― Nature Structural and Molecular Biology, 2008, 15, 891-892.	3.6	3
218	Childhood of a phoenix: modern biology in Eastern and South-Eastern Europe. Nature Reviews Molecular Cell Biology, 2008, 9, 333-336.	16.1	4
219	An ultrasensitive sorting mechanism for EGF Receptor Endocytosis. BMC Systems Biology, 2008, 2, 32.	3.0	12
220	Ataxin-2 associates with the endocytosis complex and affects EGF receptor trafficking. Cellular Signalling, 2008, 20, 1725-1739.	1.7	87
221	Novel markers of normal and neoplastic human plasmacytoid dendritic cells. Blood, 2008, 111, 3778-3792.	0.6	204
222	Going Global on Ubiquitin. Science, 2008, 322, 872-873.	6.0	4
223	Signal processing by its coil zipper domain activates IKK \hat{I}^3 . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1279-1284.	3.3	55
224	Requirements for the Interaction of Mouse Poll® with Ubiquitin and Its Biological Significance. Journal of Biological Chemistry, 2008, 283, 4658-4664.	1.6	59
225	Human Wrnip1 Is Localized in Replication Factories in a Ubiquitin-binding Zinc Finger-dependent Manner. Journal of Biological Chemistry, 2008, 283, 35173-35185.	1.6	60
226	CD2AP/CIN85 Balance Determines Receptor Tyrosine Kinase Signaling Response in Podocytes. Journal of Biological Chemistry, 2007, 282, 7457-7464.	1.6	33
227	Contributions of ubiquitin- and PCNA-binding domains to the activity of Polymerase in Saccharomyces cerevisiae. Nucleic Acids Research, 2007, 35, 881-889.	6.5	98
228	Flt3-dependent transformation by inactivating c-Cbl mutations in AML. Blood, 2007, 110, 1004-1012.	0.6	177
229	E3-Independent Monoubiquitination of Ubiquitin-Binding Proteins. Molecular Cell, 2007, 26, 891-898.	4.5	132
230	Suppressor of Tâ€cell receptor signalling 1 and 2 differentially regulate endocytosis and signalling of receptor tyrosine kinases. FEBS Letters, 2007, 581, 4767-4772.	1.3	33
231	Involvement of the ubiquitin-like domain of TBK1/IKK-i kinases in regulation of IFN-inducible genes. EMBO Journal, 2007, 26, 3451-3462.	3.5	108
232	Role of ubiquitin- and Ubl-binding proteins in cell signaling. Current Opinion in Cell Biology, 2007, 19, 199-205.	2.6	172
233	Malfunctions within the Cbl interactome uncouple receptor tyrosine kinases from destructive transport. European Journal of Cell Biology, 2007, 86, 505-512.	1.6	33
234	Protein Complexes in SUMO Signaling. , 2007, , 75-87.		O

#	Article	IF	Citations
235	Assays to Monitor Degradation of the EGF Receptor. , 2006, 327, 131-138.		4
236	Ubiquitin and NEDD8: Brothers in Arms. Science's STKE: Signal Transduction Knowledge Environment, 2006, 2006, pe50-pe50.	4.1	10
237	CYLD in Ubiquitin Signaling and Tumor Pathogenesis. Cell, 2006, 125, 643-645.	13.5	25
238	Targeting ubiquitin in cancers. European Journal of Cancer, 2006, 42, 3095-3102.	1.3	15
239	A clinoptilolite effect on cell media and the consequent effects on tumor cells in vitro. Frontiers in Bioscience - Landmark, 2006, 11, 1722.	3.0	35
240	EGFR trafficking: parkin' in a jam. Nature Cell Biology, 2006, 8, 787-788.	4.6	13
241	Regulation of ubiquitin-binding proteins by monoubiquitination. Nature Cell Biology, 2006, 8, 163-169.	4.6	279
242	Ubiquitin and ubiquitin-like proteins in cancer pathogenesis. Nature Reviews Cancer, 2006, 6, 776-788.	12.8	375
243	Reading protein modifications with interaction domains. Nature Reviews Molecular Cell Biology, 2006, 7, 473-483.	16.1	609
244	Ubiquitin-Binding Motifs in REV1 Protein Are Required for Its Role in the Tolerance of DNA Damage. Molecular and Cellular Biology, 2006, 26, 8892-8900.	1.1	183
245	Atypical Polyproline Recognition by the CMS N-terminal Src Homology 3 Domain. Journal of Biological Chemistry, 2006, 281, 38845-38853.	1.6	35
246	Specification of SUMO1- and SUMO2-interacting Motifs*. Journal of Biological Chemistry, 2006, 281, 16117-16127.	1.6	491
247	Ubiquitin Hubs in Oncogenic Networks. Molecular Cancer Research, 2006, 4, 899-904.	1.5	13
248	Cbl promotes clustering of endocytic adaptor proteins. Nature Structural and Molecular Biology, 2005, 12, 972-979.	3.6	56
249	The Cbl interactome and its functions. Nature Reviews Molecular Cell Biology, 2005, 6, 907-919.	16.1	355
250	Ubiquitylation and cell signaling. EMBO Journal, 2005, 24, 3353-3359.	3.5	642
251	Sprouty2 acts at the Cbl/CIN85 interface to inhibit epidermal growth factor receptor downregulation. EMBO Reports, 2005, 6, 635-641.	2.0	62
252	Compartmentalization of growth factor receptor signalling. Current Opinion in Cell Biology, 2005, 17, 107-111.	2.6	84

#	Article	lF	Citations
253	Molecular responses to acidosis of central chemosensitive neurons in brain. Cellular Signalling, 2005, 17, 799-808.	1.7	17
254	Implication of Phospholipase D2 in Oxidant-induced Phosphoinositide 3-Kinase Signaling via Pyk2 Activation in PC12 Cells. Journal of Biological Chemistry, 2005, 280, 16319-16324.	1.6	27
255	CIN85 Regulates the Ligand-Dependent Endocytosis of the IgE Receptor: A New Molecular Mechanism to Dampen Mast Cell Function. Journal of Immunology, 2005, 175, 4208-4216.	0.4	45
256	Src Phosphorylation of Alix/AIP1 Modulates Its Interaction with Binding Partners and Antagonizes Its Activities*. Journal of Biological Chemistry, 2005, 280, 3414-3425.	1.6	63
257	Ubiquitin-Binding Domains in Y-Family Polymerases Regulate Translesion Synthesis. Science, 2005, 310, 1821-1824.	6.0	637
258	Polo-like Kinase 1-mediated Phosphorylation Stabilizes Pin1 by Inhibiting Its Ubiquitination in Human Cells. Journal of Biological Chemistry, 2005, 280, 36575-36583.	1.6	94
259	CIN85 regulates the ability of MEKK4 to activate the p38 MAP kinase pathway. Biochemical and Biophysical Research Communications, 2005, 338, 808-814.	1.0	20
260	Oncogenic breakdowns in endocytic adaptor proteins. FEBS Letters, 2005, 579, 3231-3238.	1.3	19
261	Recruitment of Pyk2 and Cbl to lipid rafts mediates signals important for actin reorganization in growing neurites. Journal of Cell Science, 2004, 117, 2557-2568.	1.2	82
262	Suppressors of T-cell Receptor Signaling Sts-1 and Sts-2 Bind to Cbl and Inhibit Endocytosis of Receptor Tyrosine Kinases. Journal of Biological Chemistry, 2004, 279, 32786-32795.	1.6	121
263	Alix/AIP1 Antagonizes Epidermal Growth Factor Receptor Downregulation by the Cbl-SETA/CIN85 Complex. Molecular and Cellular Biology, 2004, 24, 8981-8993.	1.1	108
264	CIN85 Associates with Multiple Effectors Controlling Intracellular Trafficking of Epidermal Growth Factor Receptors. Molecular Biology of the Cell, 2004, 15, 3155-3166.	0.9	123
265	Receptor endocytosis via ubiquitin-dependent and -independent pathways. Biochemical Pharmacology, 2004, 67, 1013-1017.	2.0	38
266	Phosphorylation of JNK is involved in regulation of H+-induced c-Jun expression. Cellular Signalling, 2004, 16, 723-729.	1.7	14
267	ALIX-ing phospholipids with endosome biogenesis. BioEssays, 2004, 26, 604-607.	1.2	19
268	SH3P2 in complex with Cbl and Src. FEBS Letters, 2004, 565, 33-38.	1.3	21
269	Cargo- and compartment-selective endocytic scaffold proteins. Biochemical Journal, 2004, 383, 1-11.	1.7	57
270	Cbl signaling networks in the regulation of cell function. Cellular and Molecular Life Sciences, 2003, 60, 1805-1827.	2.4	83

#	Article	IF	CITATIONS
271	Negative receptor signalling. Current Opinion in Cell Biology, 2003, 15, 128-135.	2.6	316
272	Distinct monoubiquitin signals in receptor endocytosis. Trends in Biochemical Sciences, 2003, 28, 598-604.	3.7	410
273	Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nature Cell Biology, 2003, 5, 461-466.	4.6	715
274	Dab2 links CIN85 with clathrin-mediated receptor internalization. FEBS Letters, 2003, 554, 81-87.	1.3	38
275	Protein kinase A mediates cAMP-induced tyrosine phosphorylation of the epidermal growth factor receptor. Biochemical and Biophysical Research Communications, 2003, 301, 848-854.	1.0	22
276	Identification of a Novel Proline-Arginine Motif Involved in CIN85-dependent Clustering of Cbl and Down-regulation of Epidermal Growth Factor Receptors. Journal of Biological Chemistry, 2003, 278, 39735-39746.	1.6	115
277	Cbl-ArgBP2 complex mediates ubiquitination and degradation of c-Abl. Biochemical Journal, 2003, 370, 29-34.	1.7	66
278	Mechanisms controlling EGF receptor endocytosis and degradation. Biochemical Society Transactions, 2003, 31, 1178-1181.	1.6	153
279	Cyclic AMP Induces Transactivation of the Receptors for Epidermal Growth Factor and Nerve Growth Factor, Thereby Modulating Activation of MAP Kinase, Akt, and Neurite Outgrowth in PC12 Cells. Journal of Biological Chemistry, 2002, 277, 43623-43630.	1.6	79
280	Cbl-directed monoubiquitination of CIN85 is involved in regulation of ligand-induced degradation of EGF receptors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12191-12196.	3.3	144
281	CIN85 Participates in Cbl-b-mediated Down-regulation of Receptor Tyrosine Kinases. Journal of Biological Chemistry, 2002, 277, 39666-39672.	1.6	108
282	Sorbitol activates atypical protein kinase C and GLUT4 glucose transporter translocation/glucose transport through proline-rich tyrosine kinase-2, the extracellular signal-regulated kinase pathway and phospholipase D. Biochemical Journal, 2002, 362, 665.	1.7	30
283	CIN85/CMS family of adaptor molecules. FEBS Letters, 2002, 529, 110-115.	1.3	166
284	Proline-rich tyrosine kinase 2 regulates proliferation and differentiation of prostate cells. Molecular and Cellular Endocrinology, 2002, 186, 81-87.	1.6	39
285	Past-A, a Novel Proton-Associated Sugar Transporter, Regulates Glucose Homeostasis in the Brain. Journal of Neuroscience, 2002, 22, 9160-9165.	1.7	21
286	Cbl–CIN85–endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature, 2002, 416, 183-187.	13.7	537
287	Activation of Sphingosine Kinase by the Bradykinin B2 Receptor and Its Implication in Regulation of the ERK/MAP Kinase Pathway. Biological Chemistry, 2001, 382, 135-9.	1.2	18
288	Palmitoylation of the Human Bradykinin B2 Receptor Influences Ligand Efficacy. Biochemistry, 2001, 40, 15743-15751.	1.2	27

#	Article	IF	Citations
289	Determination of Bradykinin B2 Receptor in Vivo Phosphorylation Sites and Their Role in Receptor Function. Journal of Biological Chemistry, 2001, 276, 40431-40440.	1.6	86
290	Homeobox gene Cdx1 regulates Ras, Rho and PI3 kinase pathways leading to transformation and tumorigenesis of intestinal epithelial cells. Oncogene, 2001, 20, 4180-4187.	2.6	42
291	Glucose Activates Protein Kinase C-ζĴ» through Proline-rich Tyrosine Kinase-2, Extracellular Signal-regulated Kinase, and Phospholipase D. Journal of Biological Chemistry, 2001, 276, 35537-35545.	1.6	63
292	Pyk2 and FAK regulate neurite outgrowth induced by growth factors and integrins. Nature Cell Biology, 2000, 2, 574-581.	4.6	190
293	Glucose Activates Mitogen-activated Protein Kinase (Extracellular Signal-regulated Kinase) through Proline-rich Tyrosine Kinase-2 and the Glut1 Glucose Transporter. Journal of Biological Chemistry, 2000, 275, 40817-40826.	1.6	63
294	CIS3/SOCS-3 Suppresses Erythropoietin (EPO) Signaling by Binding the EPO Receptor and JAK2. Journal of Biological Chemistry, 2000, 275, 29338-29347.	1.6	288
295	G Protein-Coupled Receptor-Mediated Mitogen-Activated Protein Kinase Activation through Cooperation of Gα q and Gα i Signals. Molecular and Cellular Biology, 2000, 20, 6837-6848.	1.1	101
296	Oncogenic capacity of the Cdxl homeotic gene. Gastroenterology, 2000, 118, A601.	0.6	0
297	Adaptor Proteins Grb2 and Crk Couple Pyk2 with Activation of Specific Mitogen-activated Protein Kinase Cascades. Journal of Biological Chemistry, 1999, 274, 14893-14901.	1.6	189
298	The Csk Homologous Kinase Associates with TrkA Receptors and Is Involved in Neurite Outgrowth of PC12 Cells. Journal of Biological Chemistry, 1999, 274, 15059-15065.	1.6	57
299	Protein tyrosine kinase-mediated pathways in G protein-coupled receptor signaling. Cell Biochemistry and Biophysics, 1999, 30, 369-387.	0.9	42
300	Activation of mitogen-activated protein kinase by the bradykinin B2receptor is independent of receptor phosphorylation and phosphorylation-triggered internalization. FEBS Letters, 1999, 451, 337-341.	1.3	26
301	Cdx1 promotes differentiation in a rat intestinal epithelial cell line. Gastroenterology, 1999, 117, 1326-1338.	0.6	113
302	Identification of a New Pyk2 Isoform Implicated in Chemokine and Antigen Receptor Signaling. Journal of Biological Chemistry, 1998, 273, 14301-14308.	1.6	121
303	Signal Transduction Due to HIV-1 Envelope Interactions with Chemokine Receptors CXCR4 or CCR5. Journal of Experimental Medicine, 1997, 186, 1793-1798.	4.2	383
304	Tyrosine Phosphorylation of Pyk2 Is Selectively Regulated by Fyn During TCR Signaling. Journal of Experimental Medicine, 1997, 185, 1253-1260.	4.2	158
305	A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature, 1996, 383, 547-550.	13.7	956
306	Tyrosine Phosphorylation of the c-cbl Proto-oncogene Protein Product and Association with Epidermal Growth Factor (EGF) Receptor upon EGF Stimulation. Journal of Biological Chemistry, 1995, 270, 20242-20245.	1.6	182

Ivan ĕkić

#	Article	IF	CITATIONS
307	Shc Binding to Nerve Growth Factor Receptor Is Mediated by the Phosphotyrosine Interaction Domain. Journal of Biological Chemistry, 1995, 270, 15125-15129.	1.6	122
308	PC12 cells overexpressing the insulin receptor undergo insulin-dependent neuronal differentiation. Current Biology, 1994, 4, 702-708.	1.8	216
309	Plight of Bosnia and Croatia. Nature, 1992, 359, 571-571.	13.7	0
310	Ubiquitin Signaling and Cancer Pathogenesis., 0,, 1-20.		О