Adrienne GrÃat-Regamey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1512550/publications.pdf

Version: 2024-02-01

71004 73587 7,299 135 43 79 citations h-index g-index papers 139 139 139 9001 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Application of Q-methodology for identifying factors of acceptance of spatial planning instruments. Journal of Environmental Planning and Management, 2023, 66, 1890-1917.	2.4	3
2	A network optimisation approach to identify trade-offs between socio-economic and ecological objectives for regional integrated planning. City and Environment Interactions, 2022, 13, 100078.	1.8	2
3	Impact on the perceived landscape quality through renewable energy infrastructure. A discrete choice experiment in the context of the Swiss energy transition. Renewable Energy, 2022, 193, 299-308.	4.3	8
4	Structural change in agriculture and farmers' social contacts: Insights from a Swiss mountain region. Agricultural Systems, 2022, 200, 103435.	3.2	6
5	Eliciting actors' perspectives in integrated watershed management: exploring a practical tool based on a mental model approach. Journal of Environmental Planning and Management, 2021, 64, 1352-1374.	2.4	5
6	Operationalising place for land system science. Sustainability Science, 2021, 16, 1-11.	2.5	11
7	Physiological and behavioral reactions to renewable energy systems in various landscape types. Renewable and Sustainable Energy Reviews, 2021, 135, 110410.	8.2	21
8	Linking model design and application for transdisciplinary approaches in social-ecological systems. Global Environmental Change, 2021, 66, 102201.	3.6	17
9	The ValPar.CH project – Assessing the added value of ecological infrastructure in Swiss Parks. Eco Mont, 2021, 13, 64-68.	0.1	2
10	Participatory multi-objective optimization for planning dense and green cities. Journal of Environmental Planning and Management, 2021, 64, 2532-2551.	2.4	16
11	The impact of land-use legacies and recent management on natural disturbance susceptibility in mountain forests. Forest Ecology and Management, 2021, 484, 118950.	1.4	30
12	How to make socioâ€environmental modelling more useful to support policy and management?. People and Nature, 2021, 3, 560-572.	1.7	17
13	Modeling Mean Radiant Temperature Distribution in Urban Landscapes Using DART. Remote Sensing, 2021, 13, 1443.	1.8	8
14	Does rated visual landscape quality match visual features? An analysis for renewable energy landscapes. Landscape and Urban Planning, 2021, 209, 104000.	3.4	36
15	Assessing nature-based solutions for transformative change. One Earth, 2021, 4, 730-741.	3.6	66
16	Game of Cruxes: co-designing a game for scientists and stakeholders for identifying joint problems. Sustainability Science, 2021, 16, 1563-1578.	2.5	4
17	Vulnerability of ski tourism towards internal climate variability and climate change in the Swiss Alps. Science of the Total Environment, 2021, 784, 147054.	3.9	21
18	Accounting for spatial autocorrelation is needed to avoid misidentifying trade-offs and bundles among ecosystem services. Ecological Indicators, 2021, 129, 107992.	2.6	10

#	Article	IF	Citations
19	Addressing disturbance risk to mountain forest ecosystem services. Journal of Environmental Management, 2021, 296, 113188.	3.8	30
20	Harnessing sensing systems towards urban sustainability transformation. Npj Urban Sustainability, 2021, 1 , .	3.7	7
21	The difficulty of steering settlement development to reduce the loss of ecosystem services: an exploration of different development scenarios in Switzerland using spatially explicit land-use models. Journal of Environmental Planning and Management, 2020, 63, 1037-1055.	2.4	4
22	Point cloud modeling as a bridge between landscape design and planning. Landscape and Urban Planning, 2020, 203, 103903.	3.4	30
23	Global assessment of mountain ecosystem services using earth observation data. Ecosystem Services, 2020, 46, 101213.	2.3	66
24	How urban densification influences ecosystem services—a comparison between a temperate and a tropical city. Environmental Research Letters, 2020, 15, 075001.	2.2	27
25	Moving towards integrating soil into spatial planning: No net loss of soil-based ecosystem services. Journal of Environmental Management, 2020, 263, 110406.	3.8	12
26	From global drivers to local land-use change: understanding the northern Laos rubber boom. Environmental Science and Policy, 2020, 109, 103-115.	2.4	20
27	An online platform for spatial and iterative modelling with Bayesian Networks. Environmental Modelling and Software, 2020, 127, 104658.	1.9	26
28	A conceptual framework to untangle the concept of urban ecosystem services. Landscape and Urban Planning, 2020, 200, 103837.	3.4	68
29	Participatory Bayesian network modeling to understand driving factors of land-use change decisions: insights from two case studies in northeast Madagascar. Journal of Land Use Science, 2020, 15, 69-90.	1.0	9
30	Making Connections for Our Changing Mountains: Future Directions for the Mountain Research Initiative (MRI). Mountain Research and Development, 2020, 40, .	0.4	9
31	Anthropogenic climate change versus internal climate variability: impacts on snow cover in the Swiss Alps. Cryosphere, 2020, 14, 2909-2924.	1.5	9
32	Assessing livelihood vulnerability using a Bayesian network: a case study in northern Laos. Ecology and Society, 2020, 25, .	1.0	9
33	Crop booms at the forest frontier: Triggers, reinforcing dynamics, and the diffusion of knowledge and norms. Global Environmental Change, 2019, 57, 101929.	3.6	18
34	3-D Reconstruction of an Urban Landscape to Assess the Influence of Vegetation in the Radiative Budget. Forests, 2019, 10, 700.	0.9	25
35	An integrated community and ecosystem-based approach to disaster risk reduction in mountain systems. Environmental Science and Policy, 2019, 94, 143-152.	2.4	76
36	Combining urban scaling and polycentricity to explain socio-economic status of urban regions. PLoS ONE, 2019, 14, e0218022.	1.1	13

#	Article	IF	Citations
37	Nature's contributions to people in mountains: A review. PLoS ONE, 2019, 14, e0217847.	1.1	94
38	3D Point Clouds and Eye Tracking for Investigating the Perception and Acceptance of Power Lines in Different Landscapes. Multimodal Technologies and Interaction, 2019, 3, 40.	1.7	3
39	Resilience in social-ecological systems: identifying stable and unstable equilibria with agent-based models. Ecology and Society, 2019, 24, .	1.0	16
40	Catalyzing Transformations to Sustainability in the World's Mountains. Earth's Future, 2019, 7, 547-557.	2.4	65
41	Actors' diversity and the resilience of social-ecological systems to global change. Nature Sustainability, 2019, 2, 290-297.	11.5	67
42	Influence of visibility of wind farms on noise annoyance – A laboratory experiment with audio-visual simulations. Landscape and Urban Planning, 2019, 186, 67-78.	3.4	28
43	Creating space, aligning motivations, and building trust: a practical framework for stakeholder engagement based on experience in 12 ecosystem services case studies. Ecology and Society, 2019, 24, .	1.0	12
44	Predicting outdoor recreation demand on a national scale $\hat{a} \in \text{``The case of Switzerland. Applied Geography, 2019, 113, 102111.}$	1.7	20
45	Global Variation in Climate, Human Development, and Population Density Has Implications for Urban Ecosystem Services. Sustainability, 2019, 11, 6200.	1.6	15
46	Quantifying uncertainties in earth observation-based ecosystem service assessments. Environmental Modelling and Software, 2019, 111, 300-310.	1.9	38
47	Increasing the credibility of expert-based models with preference surveys $\hat{a} \in \text{``Mapping recreation in the riverine zone. Ecosystem Services, 2018, 31, 308-317.}$	2.3	27
48	Improving the performance of genetic algorithms for land-use allocation problems. International Journal of Geographical Information Science, 2018, 32, 907-930.	2.2	36
49	Dissecting perceptions of wind energy projects: A laboratory experiment using high-quality audio-visual simulations to analyze experiential versus acceptability ratings and information effects. Landscape and Urban Planning, 2018, 169, 131-147.	3.4	21
50	Uncertainty indication in soil function maps $\hat{a} \in ``transparent and easy-to-use information to support sustainable use of soil resources. Soil, 2018, 4, 123-139.$	2.2	17
51	Representation of decision-making in European agricultural agent-based models. Agricultural Systems, 2018, 167, 143-160.	3.2	108
52	Soil quality indicators – From soil functions to ecosystem services. Ecological Indicators, 2018, 94, 151-169.	2.6	127
53	Assessment of soil multi-functionality to support the sustainable use of soil resources on the Swiss Plateau. Geoderma Regional, 2018, 14, e00181.	0.9	14
54	Models of Coupled Settlement and Habitat Networks for Biodiversity Conservation: Conceptual Framework, Implementation and Potential Applications. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	7

#	Article	IF	Citations
55	Using multi-objective optimization to secure fertile soils across municipalities. Applied Geography, 2018, 97, 75-84.	1.7	16
56	Integrating ecosystem services into spatial planningâ€"A spatial decision support tool. Landscape and Urban Planning, 2017, 165, 206-219.	3.4	177
57	Mapping uncertainties in the future provision of ecosystem services in a mountain region in Switzerland. Regional Environmental Change, 2017, 17, 2309-2321.	1.4	15
58	Soil function assessment: review of methods for quantifying the contributions of soils to ecosystem services. Land Use Policy, 2017, 69, 224-237.	2.5	146
59	Reducing the loss of agricultural productivity due to compact urban development in municipalities of Switzerland. Computers, Environment and Urban Systems, 2017, 65, 162-177.	3.3	21
60	Short versus long-term urban planning using multi-objective optimization. , 2017, , .		0
61	Economic valuation of cultural ecosystem service changes to a landscape in the Swiss Alps. Ecosystem Services, 2017, 26, 197-208.	2.3	48
62	Coupling a settlement growth model with an agro-economic land allocation model for securing ecosystem services provision. Journal of Environmental Planning and Management, 2017, 60, 1127-1152.	2.4	5
63	Review of decision support tools to operationalize the ecosystem services concept. Ecosystem Services, 2017, 26, 306-315.	2.3	185
64	National ecosystem services mapping at multiple scales â¿; The German exemplar. Ecological Indicators, 2016, 70, 357-372.	2.6	55
65	Shedding light on the usability of ecosystem services–based decision support systems: An eye-tracking study linked to the cognitive probing approach. Ecosystem Services, 2016, 19, 65-86.	2.3	15
66	A backcasting approach for matching regional ecosystem services supply and demand. Environmental Modelling and Software, 2016, 75, 439-458.	1.9	44
67	Understanding farmers' influence on land-use change using a participatory Bayesian network approach in a pre-Alpine region in Switzerland. Journal of Environmental Planning and Management, 2016, 59, 2079-2101.	2.4	12
68	Policy strategies to foster the resilience of mountain social-ecological systems under uncertain global change. Environmental Science and Policy, 2016, 66, 129-139.	2.4	54
69	Organizing and facilitating Geodesign processes: Integrating tools into collaborative design processes for urban transformation. Landscape and Urban Planning, 2016, 156, 59-70.	3.4	25
70	Examining demand for urban river rehabilitation in Indonesia: Insights from a spatially explicit discrete choice experiment. Land Use Policy, 2016, 57, 514-525.	2.5	24
71	How is habitat connectivity affected by settlement and road network configurations? Results from simulating coupled habitat and human networks. Ecological Modelling, 2016, 342, 186-198.	1.2	25
72	Social valuation of ecosystem services in mountain regions. Regional Environmental Change, 2016, 16, 1985-1987.	1.4	15

#	Article	IF	Citations
73	Evaluating a visual-acoustic simulation for wind park assessment. Landscape and Urban Planning, 2016, 153, 180-197.	3.4	18
74	An improved neutral landscape model for recreating real landscapes and generating landscape series for spatial ecological simulations. Ecology and Evolution, 2016, 6, 3808-3821.	0.8	21
7 5	Prioritizing ecosystem services in rapidly urbanizing river basins: A spatial multi-criteria analytic approach. Sustainable Cities and Society, 2016, 20, 237-252.	5.1	57
76	Exploring the influence of perceived urban change on residents' place attachment. Journal of Environmental Psychology, 2016, 46, 67-82.	2.3	79
77	An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosystem Services, 2016, 17, 14-23.	2.3	418
78	Towards a national set of ecosystem service indicators: Insights from Germany. Ecological Indicators, 2016, 61, 38-48.	2.6	72
79	Bringing ecosystem services indicators into spatial planning practice: Lessons from collaborative development of a web-based visualization platform. Ecological Indicators, 2016, 61, 90-99.	2.6	26
80	Changing the Course of Rivers in an Asian City: Linking Landscapes to Human Benefits through Iterative Modeling and Design. Journal of the American Water Resources Association, 2015, 51, 672-688.	1.0	18
81	Ecosystem services for connecting actors $\hat{a}\in$ lessons from a symposium. Change and Adaptation in Socio-Ecological Systems, 2015, 2, .	1.5	12
82	How to successfully publish interdisciplinary research: learning from an Ecology and Society Special Feature. Ecology and Society, 2015, 20, .	1.0	11
83	Understanding the value of urban riparian corridors: Considerations in planning for cultural services along an Indonesian river. Landscape and Urban Planning, 2015, 138, 144-154.	3.4	86
84	A prototypical tool for normative landscape scenario development and the analysis of actors' policy preferences. Landscape and Urban Planning, 2015, 137, 40-53.	3.4	6
85	Quality of urban patterns: Spatially explicit evidence for multiple scales. Landscape and Urban Planning, 2015, 142, 47-62.	3.4	26
86	Ecosystem services visualization and communication: A demand analysis approach for designing information and conceptualizing decision support systems. Ecosystem Services, 2015, 13, 173-183.	2.3	30
87	A tiered approach for mapping ecosystem services. Ecosystem Services, 2015, 13, 16-27.	2.3	107
88	Mediating Effects Between Objective and Subjective Indicators of Urban Quality of Life: Testing Specific Models for Safety and Access. Social Indicators Research, 2015, 122, 189-210.	1.4	34
89	Computational snow avalanche simulation in forested terrain. Natural Hazards and Earth System Sciences, 2014, 14, 2233-2248.	1.5	36
90	On the Effects of Scale for Ecosystem Services Mapping. PLoS ONE, 2014, 9, e112601.	1.1	110

#	Article	IF	Citations
91	On the importance of non-linear relationships between landscape patterns and the sustainable provision of ecosystem services. Landscape Ecology, 2014, 29, 201-212.	1.9	65
92	Modeling land use decisions with Bayesian networks: Spatially explicit analysis of driving forces on land use change. Environmental Modelling and Software, 2014, 52, 222-233.	1.9	69
93	Land use trade-offs for flood protection: A choice experiment with visualizations. Ecosystem Services, 2014, 10, 111-123.	2.3	43
94	Farmers' perception of their decision-making in relation to policy schemes: A comparison of case studies from Switzerland and the United States. Land Use Policy, 2014, 41, 163-171.	2.5	21
95	Integrating an urban green space typology into procedural 3D visualization for collaborative planning. Computers, Environment and Urban Systems, 2014, 48, 99-110.	3.3	45
96	Developing a GIS-Based Visual-Acoustic 3D Simulation for Wind Farm Assessment. ISPRS International Journal of Geo-Information, 2014, 3, 29-48.	1.4	32
97	Perceived contribution of indicator systems to sustainable development in developing countries. Sustainable Development, 2013, 21, 18-29.	6.9	33
98	Rivers as municipal infrastructure: Demand for environmental services in informal settlements along an Indonesian river. Global Environmental Change, 2013, 23, 1542-1555.	3.6	51
99	Understanding ecosystem services trade-offs with interactive procedural modeling for sustainable urban planning. Landscape and Urban Planning, 2013, 109, 107-116.	3.4	118
100	Facing uncertainty in ecosystem services-based resource management. Journal of Environmental Management, 2013, 127, S145-S154.	3.8	86
101	Integrating Expert Knowledge into Mapping Ecosystem Services Trade-offs for Sustainable Forest Management. Ecology and Society, 2013, 18, .	1.0	75
102	Local Hedonic House-Price Modelling for Urban Planners: Advantages of Using Local Regression Techniques. Environment and Planning B: Planning and Design, 2013, 40, 664-682.	1.7	30
103	Sustainable Land Use in Mountain Regions Under Global Change: Synthesis Across Scales and Disciplines. Ecology and Society, 2013, 18, .	1.0	42
104	Trade-Offs between Ecosystem Services in a Mountain Region. Ecology and Society, 2013, 18, .	1.0	125
105	The Promise of the Ecosystem Services Concept for Planning and Decision-Making. Gaia, 2013, 22, 232-236.	0.3	60
106	Reply to Kirchhoff: Cultural values and ecosystem services. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, .	3.3	10
107	Snow and weather conditions associated with avalanche releases in forests: Rare situations with decreasing trends during the last 41 years. Cold Regions Science and Technology, 2012, 83-84, 77-88.	1.6	32
108	Mountain Ecosystem Services: Who Cares?. Mountain Research and Development, 2012, 32, S23-S34.	0.4	256

#	Article	IF	CITATIONS
109	Snow Avalanches in Forested Terrain: Influence of Forest Parameters, Topography, and Avalanche Characteristics on Runout Distance. Arctic, Antarctic, and Alpine Research, 2012, 44, 509-519.	0.4	56
110	Spatially explicit inverse modeling for urban planning. Applied Geography, 2012, 34, 47-56.	1.7	7
111	Form follows function? Proposing a blueprint for ecosystem service assessments based on reviews and case studies. Ecological Indicators, 2012, 21, 145-154.	2.6	155
112	Avalanche protection by forests â€" A choice experiment in the Swiss Alps. Forest Policy and Economics, 2012, 15, 108-113.	1.5	33
113	Erratum to "Avalanche Protection by Forests - A Choice Experiment in the Swiss Alps―[Forest Policy and Economics 15 (2012) 108–113]. Forest Policy and Economics, 2012, 17, 18.	1.5	2
114	Contributions of cultural services to the ecosystem services agenda. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8812-8819.	3.3	1,079
115	Assessing the impacts of economic and climate changes on land-use in mountain regions: A spatial dynamic modeling approach. Agriculture, Ecosystems and Environment, 2012, 149, 50-63.	2.5	91
116	VerÄ r derung von Wald und Waldleistungen in der Landschaft Davos im Zuge des Klimawandels. Schweizerische Zeitschrift Fur Forstwesen, 2012, 163, 493-501.	0.5	11
117	Waldausdehnung in zwei Regionen des Schweizer Berggebiets: eine integrative Analyse. Schweizerische Zeitschrift Fur Forstwesen, 2012, 163, 502-511.	0.5	1
118	Customized Visualization of Natural Hazards Assessment Results and Associated Uncertainties through Interactive Functionality. Cartography and Geographic Information Science, 2011, 38, 232-242.	1.4	5
119	Defining a typology of peri-urban land-use conflicts – A case study from Switzerland. Landscape and Urban Planning, 2011, 101, 149-156.	3.4	250
120	Visualization of uncertainty in natural hazards assessments using an interactive cartographic information system. Natural Hazards, 2011, 59, 1735-1751.	1.6	43
121	Methodischer Rahmen f $ ilde{A}$ ½r den Einsatz von Backcasting zur Anpassung an den Klimawandel. Disp, 2011, 47, 43-51.	0.8	4
122	Planning from a Future Vision: Inverse Modeling in Spatial Planning. Environment and Planning B: Planning and Design, 2011, 38, 979-994.	1.7	8
123	Lawinenschutz durch WÃÞder – Methodik und Resultate einer Zahlungsbereitschafts-analyse. Schweizerische Zeitschrift Fur Forstwesen, 2011, 162, 389-395.	0.5	4
124	Constraints to implementation of sustainability indicator systems in five Asian cities. Local Environment, 2010, 15, 731-742.	1.1	12
125	Linking GIS-based models to value ecosystem services in an Alpine region. Journal of Environmental Management, 2008, 89, 197-208.	3.8	140
126	Valuing Ecosystem Services for Sustainable Landscape Planning in Alpine Regions. Mountain Research and Development, 2008, 28, 156-165.	0.4	90

#	Article	IF	CITATIONS
127	Wald und Klimawandel – AnsÃໝe für eine ökonomische Bewertung Forests and climate change – approaches to an economic valuation. Schweizerische Zeitschrift Fur Forstwesen, 2008, 159, 374-380.	0.5	7
128	Predicting the scenic beauty value of mapped landscape changes in a mountainous region through the use of GIS. Environment and Planning B: Planning and Design, 2007, 34, 50-67.	1.7	70
129	Participatory scenario analysis for integrated regional modelling. Landscape and Urban Planning, 2007, 81, 114-131.	3.4	153
130	Integrating the valuation of ecosystem services into the Input–Output economics of an Alpine region. Ecological Economics, 2007, 63, 786-798.	2.9	44
131	Linking Models of Land Use, Resources, and Economy to Simulate the Development of Mountain Regions (ALPSCAPE). Environmental Management, 2007, 40, 379-393.	1.2	22
132	A Bayesian probabilistic framework for avalanche modelling based on observations. Cold Regions Science and Technology, 2006, 46, 192-203.	1.6	52
133	Spatially explicit avalanche risk assessment linking Bayesian networks to a GIS. Natural Hazards and Earth System Sciences, 2006, 6, 911-926.	1.5	168
134	On the importance of a broad stakeholder network for developing a credible, salient and legitimate tiered approach for assessing ecosystem services. One Ecosystem, 0, 3, e25470.	0.0	10
135	Mapping and assessing ecosystem services in the EU - Lessons learned from the ESMERALDA approach of integration. One Ecosystem, 0, 3, .	0.0	33