
Jennifer Chua

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1512330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proceedings of the United States of America, 2005, 102, 4033-4038.	7.1	481
2	<i>Mycobacterium tuberculosis</i> glycosylated phosphatidylinositol causes phagosome maturation arrest. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5437-5442.	7.1	435
3	CELL BIOLOGY OF <i>MYCOBACTERIUM TUBERCULOSIS</i> PHAGOSOME. Annual Review of Cell and Developmental Biology, 2004, 20, 367-394.	9.4	397
4	Tuberculosis Toxin Blocking Phagosome Maturation Inhibits a Novel Ca2+/Calmodulin-PI3K hVPS34 Cascade. Journal of Experimental Medicine, 2003, 198, 653-659.	8.5	307
5	Mycobacterium tuberculosisPhagosome Maturation Arrest: Mycobacterial Phosphatidylinositol Analog Phosphatidylinositol Mannoside Stimulates Early Endosomal Fusion. Molecular Biology of the Cell, 2004, 15, 751-760.	2.1	238
6	Rab14 is critical for maintenance of Mycobacterium tuberculosis phagosome maturation arrest. EMBO Journal, 2006, 25, 5250-5259.	7.8	152
7	Higher order Rab programming in phagolysosome biogenesis. Journal of Cell Biology, 2006, 174, 923-929.	5.2	115
8	Induction of p38 Mitogen-activated Protein Kinase Reduces Early Endosome Autoantigen 1 (EEA1) Recruitment to Phagosomal Membranes. Journal of Biological Chemistry, 2003, 278, 46961-46967.	3.4	109
9	Mycobacterium tuberculosis Phagosome Maturation Arrest: Selective Targeting of PI3P-Dependent Membrane Trafficking. Traffic, 2003, 4, 600-606.	2.7	103
10	A tale of two lipids: Mycobacterium tuberculosis phagosome maturation arrest. Current Opinion in Microbiology, 2004, 7, 71-77.	5.1	94
11	Mechanism of Inducible Nitric Oxide Synthase Exclusion from Mycobacterial Phagosomes. PLoS Pathogens, 2007, 3, e186.	4.7	93
12	Mycobacterium tuberculosis Reprograms Waves of Phosphatidylinositol 3-Phosphate on Phagosomal Organelles. Journal of Biological Chemistry, 2004, 279, 36982-36992.	3.4	80
13	Cellubrevin Alterations and Mycobacterium tuberculosis Phagosome Maturation Arrest. Journal of Biological Chemistry, 2002, 277, 17320-17326.	3.4	50
14	Endosomal membrane traffic: convergence point targeted by Mycobacterium tuberculosis and HIV. Cellular Microbiology, 2004, 6, 999-1009.	2.1	46
15	Regulators of membrane trafficking andMycobacterium tuberculosis phagosome maturation block. Electrophoresis, 2000, 21, 3378-3385.	2.4	42
16	Dynamin 2 orchestrates the global actomyosin cytoskeleton for epithelial maintenance and apical constriction. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20770-20775.	7.1	42
17	Four-dimensional imaging of filter-grown polarized epithelial cells. Histochemistry and Cell Biology, 2007, 127, 463-472.	1.7	32
18	Nicotinic Induction of Preproenkephalin and Tyrosine Hydroxylase Gene Expression in Butyrate-Differentiated Rat PC12 Cells: A Model for Adaptation to Gut-Derived Environmental Signals. Pediatric Research, 2003, 53, 113-118.	2.3	23

JENNIFER CHUA

#	Article	IF	CITATIONS
19	A spontaneous mutation in kdsD, a biosynthesis gene for 3 Deoxy-D-manno-Octulosonic Acid, occurred in a ciprofloxacin resistant strain of Francisella tularensis and caused a high level of attenuation in murine models of tularemia. PLoS ONE, 2017, 12, e0174106.	2.5	17
20	Protection of rhesus macaques against inhalational anthrax with a Bacillus anthracis capsule conjugate vaccine. Vaccine, 2016, 34, 4012-4016.	3.8	14
21	pH Alkalinization by Chloroquine Suppresses Pathogenic Burkholderia Type 6 Secretion System 1 and Multinucleated Giant Cells. Infection and Immunity, 2017, 85, .	2.2	14
22	Phenotypic Characterization of a Novel Virulence-Factor Deletion Strain of Burkholderia mallei That Provides Partial Protection against Inhalational Glanders in Mice. Frontiers in Cellular and Infection Microbiology, 2016, 6, 21.	3.9	13
23	Green tea and epigallocatechin-3-gallate are bactericidal against Bacillus anthracis. FEMS Microbiology Letters, 2017, 364, .	1.8	12
24	Formaldehyde and Glutaraldehyde Inactivation of Bacterial Tier 1 Select Agents in Tissues. Emerging Infectious Diseases, 2019, 25, 919-926.	4.3	11
25	Human Innate Immune Cells Respond Differentially to Poly-γ-Glutamic Acid Polymers from <i>Bacillus anthracis</i> and Nonpathogenic <i>Bacillus</i> Species. Journal of Immunology, 2020, 204, 1263-1273.	0.8	11
26	A Francisella novicida Mutant, Lacking the Soluble Lytic Transglycosylase Slt, Exhibits Defects in Both Growth and Virulence. Frontiers in Microbiology, 2019, 10, 1343.	3.5	10
27	A DUF4148 family protein produced inside RAW264.7 cells is a critical Burkholderia pseudomallei virulence factor. Virulence, 2020, 11, 1041-1058.	4.4	4
28	The Madagascar Hissing Cockroach as an Alternative Non-mammalian Animal Model to Investigate Virulence, Pathogenesis, and Drug Efficacy. Journal of Visualized Experiments, 2017, , .	0.3	3
29	Opsono-Adherence Assay to Evaluate Functional Antibodies in Vaccine Development Against Bacillus anthracis and Other Encapsulated Pathogens. Journal of Visualized Experiments, 2020, , .	0.3	0
30	Burkholderia pseudomallei JW270 Is Lethal in the Madagascar Hissing Cockroach Infection Model and Can Be Utilized at Biosafety Level 2 to Identify Putative Virulence Factors. Infection and Immunity, 0, , .	2.2	0