
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1512122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Immune Response in Multiple Sclerosis. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 121-139.	22.4	96
2	Protocol for in vitro analysis of pro-inflammatory and metabolic functions of cultured primary murine astrocytes. STAR Protocols, 2022, 3, 101033.	1.2	4
3	DICAM promotes T _H 17 lymphocyte trafficking across the blood-brain barrier during autoimmune neuroinflammation. Science Translational Medicine, 2022, 14, eabj0473.	12.4	27
4	Protocol for inducing inflammation and acute myelin degeneration in larval zebrafish. STAR Protocols, 2022, 3, 101134.	1.2	1
5	Function and therapeutic value of astrocytes in neurological diseases. Nature Reviews Drug Discovery, 2022, 21, 339-358.	46.4	160
6	Intranasal delivery of a small-molecule ErbB inhibitor promotes recovery from acute and late-stage CNS inflammation. JCI Insight, 2022, 7, .	5.0	9
7	Glioblastoma scRNA-seq shows treatment-induced, immune-dependent increase in mesenchymal cancer cells and structural variants in distal neural stem cells. Neuro-Oncology, 2022, 24, 1494-1508.	1.2	11
8	Editorial: Nanoparticle-Mediated Signaling Rewiring and Reprogramming of Immune Responses. Frontiers in Immunology, 2022, 13, .	4.8	0
9	Role of sphingolipid metabolism in neurodegeneration. Journal of Neurochemistry, 2021, 158, 25-35.	3.9	63
10	SARS-CoV-2-induced lung pathology: AHR as a candidate therapeutic target. Cell Research, 2021, 31, 1-2.	12.0	22
11	Aryl Hydrocarbon Receptor Activation in Astrocytes by Laquinimod Ameliorates Autoimmune Inflammation in the CNS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	23
12	A cell-based drug delivery platform for treating central nervous system inflammation. Journal of Molecular Medicine, 2021, 99, 663-671.	3.9	8
13	The aryl hydrocarbon receptor and the gut–brain axis. Cellular and Molecular Immunology, 2021, 18, 259-268.	10.5	61
14	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	14.8	1,098
15	Microglia and Central Nervous System–Associated Macrophages—From Origin to Disease Modulation. Annual Review of Immunology, 2021, 39, 251-277.	21.8	228
16	Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science, 2021, 372, .	12.6	127
17	The aryl hydrocarbon receptor suppresses immunity to oral squamous cell carcinoma through immune checkpoint regulation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	32
18	Tryptophan metabolism drives dynamic immunosuppressive myeloid states in IDH-mutant gliomas. Nature Cancer, 2021, 2, 723-740.	13.2	110

#	Article	IF	CITATIONS
19	Therapeutic induction of tolerogenic dendritic cells via aryl hydrocarbon receptor signaling. Current Opinion in Immunology, 2021, 70, 33-39.	5.5	19
20	Self-tunable engineered yeast probiotics for the treatment of inflammatory bowel disease. Nature Medicine, 2021, 27, 1212-1222.	30.7	124
21	The Aryl Hydrocarbon Receptor–Dependent TGF-α/VEGF-B Ratio Correlates With Disease Subtype and Prognosis in Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	12
22	Functional immune cell–astrocyte interactions. Journal of Experimental Medicine, 2021, 218, .	8.5	49
23	AHR signaling is induced by infection with coronaviruses. Nature Communications, 2021, 12, 5148.	12.8	38
24	TrbK controls astrocyte-driven oligodendrocyte copper poisoning. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2110998118.	7.1	0
25	Glial and myeloid heterogeneity in the brain tumour microenvironment. Nature Reviews Cancer, 2021, 21, 786-802.	28.4	83
26	Repositioning TH cell polarization from single cytokines to complex help. Nature Immunology, 2021, 22, 1210-1217.	14.5	91
27	Gut-licensed IFNÎ ³ + NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature, 2021, 590, 473-479.	27.8	178
28	Aryl Hydrocarbon Receptor Plasma Agonist Activity Correlates With Disease Activity in Progressive MS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	14
29	Neuroprotection: Why, when and how. Journal of the Neurological Sciences, 2021, 429, 117923.	0.6	0
30	Synthetic biology: at the crossroads of genetic engineering and human therapeutics—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, , .	3.8	2
31	TAMI-35. DETECTING SINGLE-CELL INTERACTIONS IN ORGANOTYPIC CULTURES OF GLIOBLASTOMA USING BARCODED RABIES VIRUS. Neuro-Oncology, 2021, 23, vi205-vi205.	1.2	0
32	Role of AHR in the control of GBM-associated myeloid cells. Seminars in Cancer Biology, 2020, 64, 13-18.	9.6	18
33	Glial Cells as Regulators of Neuroimmune Interactions in the Central Nervous System. Journal of Immunology, 2020, 204, 251-255.	0.8	27
34	Astrocyte Crosstalk in CNS Inflammation. Neuron, 2020, 108, 608-622.	8.1	423
35	Negative feedback control of neuronal activity by microglia. Nature, 2020, 586, 417-423.	27.8	520
36	Targeted Single-Cell RNA and DNA Sequencing With Fluorescence-Activated Droplet Merger. Analytical Chemistry, 2020, 92, 14616-14623.	6.5	9

#	Article	IF	CITATIONS
37	AHR is a Zika virus host factor and a candidate target for antiviral therapy. Nature Neuroscience, 2020, 23, 939-951.	14.8	57
38	Checkpoint Receptor TIGIT Expressed on Tim-1+ B Cells Regulates Tissue Inflammation. Cell Reports, 2020, 32, 107892.	6.4	35
39	Tolerogenic nanoparticles suppress central nervous system inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32017-32028.	7.1	60
40	The Role of Astrocytes in CNS Inflammation. Trends in Immunology, 2020, 41, 805-819.	6.8	266
41	T Follicular Regulatory Cell–Derived Fibrinogen-like Protein 2 Regulates Production of Autoantibodies and Induction of Systemic Autoimmunity. Journal of Immunology, 2020, 205, 3247-3262.	0.8	13
42	Imaging-AMARETTO: An Imaging Genomics Software Tool to Interrogate Multiomics Networks for Relevance to Radiography and Histopathology Imaging Biomarkers of Clinical Outcomes. JCO Clinical Cancer Informatics, 2020, 4, 421-435.	2.1	10
43	Activin-A limits Th17 pathogenicity and autoimmune neuroinflammation via CD39 and CD73 ectonucleotidases and Hif1-I±â€"dependent pathways. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12269-12280.	7.1	21
44	The NLRP3 inflammasome in progressive multiple sclerosis. Brain, 2020, 143, 1286-1288.	7.6	8
45	The Gut–CNS Axis in Multiple Sclerosis. Trends in Neurosciences, 2020, 43, 622-634.	8.6	64
46	DNA vaccine encoding heat shock protein 90 protects from murine lupus. Arthritis Research and Therapy, 2020, 22, 152.	3.5	3
47	Serum antibodies to phosphatidylcholine in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e765.	6.0	10
48	<scp>DNA</scp> Vaccination With Hsp70 Protects Against Systemic Lupus Erythematosus in (<scp>NZB</scp> × <scp>NZW</scp>)F1 Mice. Arthritis and Rheumatology, 2020, 72, 997-1002.	5.6	9
49	MAFG-driven astrocytes promote CNS inflammation. Nature, 2020, 578, 593-599.	27.8	282
50	Editorial: Update on Translational Neuroimmunology - Research of ISNI 2018. Frontiers in Immunology, 2020, 11, 2012.	4.8	1
51	Astrocytes play a crucial role in the formation and evolution of MS lesions – Commentary. Multiple Sclerosis Journal, 2019, 25, 19-20.	3.0	4
52	The Sympathetic Nervous System Mitigates CNS Autoimmunity via β2-Adrenergic Receptor Signaling in Immune Cells. Cell Reports, 2019, 28, 3120-3130.e5.	6.4	43
53	Meningeal Memories of Viral Infection. Trends in Neurosciences, 2019, 42, 513-514.	8.6	2
54	Role of Aryl Hydrocarbon Receptor (AhR) in the Regulation of Immunity and Immunopathology During Trypanosoma cruzi Infection. Frontiers in Immunology, 2019, 10, 631.	4.8	28

#	Article	IF	CITATIONS
55	MRI phenotypes in MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e530.	6.0	28
56	Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39. Nature Neuroscience, 2019, 22, 729-740.	14.8	327
57	Myeloid cells in the central nervous system: So similar, yet so different. Science Immunology, 2019, 4, .	11.9	8
58	Metabolic Control of Astrocyte Pathogenic Activity via cPLA2-MAVS. Cell, 2019, 179, 1483-1498.e22.	28.9	120
59	Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell, 2019, 176, 581-596.e18.	28.9	150
60	Chi3l3 induces oligodendrogenesis in an experimental model of autoimmune neuroinflammation. Nature Communications, 2019, 10, 217.	12.8	56
61	Regulation of Astrocyte Functions in Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a029009.	6.2	69
62	The aryl hydrocarbon receptor: an environmental sensor integrating immune responses in health and disease. Nature Reviews Immunology, 2019, 19, 184-197.	22.7	694
63	Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity, 2018, 48, 19-33.	14.3	596
64	Binding Mode and Structure–Activity Relationships of ITE as an Aryl Hydrocarbon Receptor (AhR) Agonist. ChemMedChem, 2018, 13, 270-279.	3.2	20
65	Detection of aryl hydrocarbon receptor agonists in human samples. Scientific Reports, 2018, 8, 4970.	3.3	24
66	Epigenetic control of early neurodegenerative events in diabetic retinopathy by the histone deacetylase <scp>SIRT</scp> 6. Journal of Neurochemistry, 2018, 144, 128-138.	3.9	40
67	Microglial control of astrocytes in response to microbial metabolites. Nature, 2018, 557, 724-728.	27.8	693
68	Effects of Systolic Blood Pressure on Brain Integrity in Multiple Sclerosis. Frontiers in Neurology, 2018, 9, 487.	2.4	15
69	HIF-1α-induced xenobiotic transporters promote Th17 responses in Crohn's disease. Journal of Autoimmunity, 2018, 94, 122-133.	6.5	36
70	IMMU-54. THE ONCOMETABOLITE R-2-HYDROXYGLUTARATE SUPPRESSES THE INNATE IMMUNE MICROENVIRONMENT OF IDH1-MUTATED GLIOMAS VIA ARYL HYDROCARBON RECEPTOR SIGNALING. Neuro-Oncology, 2018, 20, vi133-vi133.	1.2	0
71	Dendritic cells in autoimmunity, infections, and cancer. Seminars in Immunopathology, 2017, 39, 97-98.	6.1	4
72	Sample size requirements for one-year treatment effects using deep gray matter volume from 3T MRI in progressive forms of multiple sclerosis. International Journal of Neuroscience, 2017, 127, 971-980.	1.6	12

FRANCISCO J QUINTANA

#	Article	IF	CITATIONS
73	Sphingosine 1-phosphate receptor modulation suppresses pathogenic astrocyte activation and chronic progressive CNS inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2012-2017.	7.1	156
74	Control of immune-mediated pathology via the aryl hydrocarbon receptor. Journal of Biological Chemistry, 2017, 292, 12383-12389.	3.4	76
75	Role of AHR and HIF-1α in Glioblastoma Metabolism. Trends in Endocrinology and Metabolism, 2017, 28, 428-436.	7.1	89
76	Old dog, new tricks: IL-6 cluster signaling promotes pathogenic TH17 cell differentiation. Nature Immunology, 2017, 18, 8-10.	14.5	26
77	A gut feeling about multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10528-10529.	7.1	5
78	Dynamic regulation of serum aryl hydrocarbon receptor agonists in MS. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e359.	6.0	37
79	IFNÎ ³ -Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment. Cell, 2017, 170, 127-141.e15.	28.9	140
80	Mucosal administration of CD3-specific monoclonal antibody inhibits diabetes in NOD mice and in a preclinical mouse model transgenic for the CD3 epsilon chain. Journal of Autoimmunity, 2017, 76, 115-122.	6.5	16
81	Tolerogenic dendritic cells. Seminars in Immunopathology, 2017, 39, 113-120.	6.1	139
82	Bilirubin suppresses Th17 immunity in colitis by upregulating CD39. JCI Insight, 2017, 2, .	5.0	67
83	Astrocytes to the rescue! Glia limitans astrocytic endfeet control CNS inflammation. Journal of Clinical Investigation, 2017, 127, 2897-2899.	8.2	45
84	Precision Medicine in Multiple Sclerosis: Future of PET Imaging of Inflammation and Reactive Astrocytes. Frontiers in Molecular Neuroscience, 2016, 9, 85.	2.9	19
85	Purinergic Signaling as a Regulator of Th17 Cell Plasticity. PLoS ONE, 2016, 11, e0157889.	2.5	30
86	Regulation of the T Cell Response by CD39. Trends in Immunology, 2016, 37, 427-439.	6.8	157
87	Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nature Medicine, 2016, 22, 586-597.	30.7	987
88	Interleukin 1β Mediates Intestinal Inflammation in Mice and Patients With Interleukin 10 Receptor Deficiency. Gastroenterology, 2016, 151, 1100-1104.	1.3	156
89	Environmental control of autoimmune inflammation in the central nervous system. Current Opinion in Immunology, 2016, 43, 46-53.	5.5	43
90	Astrocyteâ€intrinsic regulation of central nervous system inflammation and neurodegeneration. Clinical and Experimental Neuroimmunology, 2016, 7, 28-38.	1.0	1

#	Article	IF	CITATIONS
91	Antiâ€inflammatory effects of melatonin in multiple sclerosis. BioEssays, 2016, 38, 1016-1026.	2.5	36
92	IL-10-dependent Tr1 cells attenuate astrocyte activation and ameliorate chronic central nervous system inflammation. Brain, 2016, 139, 1939-1957.	7.6	87
93	Alterations of the human gut microbiome in multiple sclerosis. Nature Communications, 2016, 7, 12015.	12.8	957
94	Tolerogenic nanoparticles inhibit T cell–mediated autoimmunity through SOCS2. Science Signaling, 2016, 9, ra61.	3.6	165
95	AHR Activation Is Protective against Colitis Driven by T Cells in Humanized Mice. Cell Reports, 2016, 17, 1318-1329.	6.4	147
96	Digestion of Chromatin in Apoptotic Cell Microparticles Prevents Autoimmunity. Cell, 2016, 166, 88-101.	28.9	340
97	Norepinephrine Controls Effector T Cell Differentiation through β2-Adrenergic Receptor–Mediated Inhibition of NF-κB and AP-1 in Dendritic Cells. Journal of Immunology, 2016, 196, 637-644.	0.8	59
98	The â€~Omics' of Amyotrophic Lateral Sclerosis. Trends in Molecular Medicine, 2016, 22, 53-67.	6.7	33
99	Achieving Tolerance with Perforin-Secreting Dendritic Cells. Trends in Molecular Medicine, 2016, 22, 3-4.	6.7	3
100	Serum lipid antibodies are associated with cerebral tissue damage in multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e200.	6.0	35
101	System-wide Analysis of the T Cell Response. Cell Reports, 2016, 14, 2733-2744.	6.4	67
102	<i>Science Signaling</i> Podcast for 21 June 2016: Nanoparticles to treat type 1 diabetes. Science Signaling, 2016, 9, c15.	3.6	0
103	Fatal autoimmunity in mice reconstituted with human hematopoietic stem cells encoding defective FOXP3. Blood, 2015, 125, 3886-3895.	1.4	33
104	Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nature Medicine, 2015, 21, 638-646.	30.7	374
105	Control of autoimmune CNS inflammation by astrocytes. Seminars in Immunopathology, 2015, 37, 625-638.	6.1	152
106	Role of astrocytes and microglia in central nervous system inflammation. Seminars in Immunopathology, 2015, 37, 575-576.	6.1	12
107	Melatonin Contributes to the Seasonality of Multiple Sclerosis Relapses. Cell, 2015, 162, 1338-1352.	28.9	249
108	Sodium intake is associated with increased disease activity in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 26-31.	1.9	217

#	Article	IF	CITATIONS
109	Examining Effects of Anticipated Stigma, Centrality, Salience, Internalization, and Outness on Psychological Distress for People with Concealable Stigmatized Identities. PLoS ONE, 2014, 9, e96977.	2.5	137
110	LeA(H)Rning self-control. Cell Research, 2014, 24, 1155-1156.	12.0	10
111	Epitope spreading as an early pathogenic event in pediatric multiple sclerosis. Neurology, 2014, 83, 2219-2226.	1.1	58
112	Immunological Relevance of the Coevolution of IDO1 and AHR. Frontiers in Immunology, 2014, 5, 521.	4.8	66
113	Treg Cells Expressing the Coinhibitory Molecule TIGIT Selectively Inhibit Proinflammatory Th1 and Th17 Cell Responses. Immunity, 2014, 40, 569-581.	14.3	702
114	IL-21 induces IL-22 production in CD4+ T cells. Nature Communications, 2014, 5, 3753.	12.8	134
115	Interleukin-10 Receptor Signaling in Innate Immune Cells Regulates Mucosal Immune Tolerance and Anti-Inflammatory Macrophage Function. Immunity, 2014, 40, 706-719.	14.3	455
116	Evaluation of circulating osteopontin levels in an unselected cohort of patients with multiple sclerosis: relevance for biomarker development. Multiple Sclerosis Journal, 2014, 20, 438-444.	3.0	36
117	Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nature Medicine, 2014, 20, 1147-1156.	30.7	380
118	Leptin deficiency impairs maturation of dendritic cells and enhances induction of regulatory <scp>T</scp> and <scp>T</scp> h17 cells. European Journal of Immunology, 2014, 44, 794-806.	2.9	89
119	Characterization of Human CD39+ Th17 Cells with Suppressor Activity and Modulation in Inflammatory Bowel Disease. PLoS ONE, 2014, 9, e87956.	2.5	54
120	Aryl Hydrocarbon Receptor Control of Adaptive Immunity. Pharmacological Reviews, 2013, 65, 1148-1161.	16.0	267
121	Fine tuning of the immune response by the Aryl Hydrocarbon Receptor. Seminars in Immunopathology, 2013, 35, 613-613.	6.1	2
122	IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nature Immunology, 2013, 14, 1054-1063.	14.5	294
123	Antigen Microarrays for the Study of Autoimmune Diseases. Clinical Chemistry, 2013, 59, 1036-1044.	3.2	27
124	Circulating MicroRNAs as biomarkers for disease staging in multiple sclerosis. Annals of Neurology, 2013, 73, 729-740.	5.3	214
125	The aryl hydrocarbon receptor: a molecular pathway for the environmental control of the immune response. Immunology, 2013, 138, 183-189.	4.4	94
126	Regulation of central nervous system autoimmunity by the aryl hydrocarbon receptor. Seminars in Immunopathology, 2013, 35, 627-635.	6.1	25

FRANCISCO J QUINTANA

#	Article	IF	CITATIONS
127	Nanoparticles for the induction of antigen-specific Tregs. Immunotherapy, 2013, 5, 437-440.	2.0	12
128	P-056 Aryl Hydrocarbon Receptor Expression—A Comparison Between Patients with IBD and Healthy Controls, and Association with Serum Fatty Acids. Inflammatory Bowel Diseases, 2013, 19, S49-S50.	1.9	0
129	Overexpression of the CTLA-4 Isoform Lacking Exons 2 and 3 Causes Autoimmunity. Journal of Immunology, 2012, 188, 155-162.	0.8	25
130	Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11270-11275.	7.1	264
131	Defect in regulatory B-cell function and development of systemic autoimmunity in T-cell Ig mucin 1 (Tim-1) mucin domain-mutant mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12105-12110.	7.1	125
132	Induction and molecular signature of pathogenic TH17 cells. Nature Immunology, 2012, 13, 991-999.	14.5	980
133	Aiolos promotes TH17 differentiation by directly silencing II2 expression. Nature Immunology, 2012, 13, 770-777.	14.5	222
134	The innate immune system in demyelinating disease. Immunological Reviews, 2012, 248, 170-187.	6.0	157
135	Lipids and lipid-reactive antibodies as biomarkers for multiple sclerosis. Journal of Neuroimmunology, 2012, 248, 53-57.	2.3	43
136	Activated Human CD4+CD45RO+ Memory T-Cells Indirectly Inhibit NLRP3 Inflammasome Activation through Downregulation of P2X7R Signalling. PLoS ONE, 2012, 7, e39576.	2.5	27
137	The HSP60 immune system network. Trends in Immunology, 2011, 32, 89-95.	6.8	161
138	Oral tolerance. Immunological Reviews, 2011, 241, 241-259.	6.0	488
139	Reply to "Detecting oxysterols in the human circulation― Nature Immunology, 2011, 12, 577-578.	14.5	2
140	Network Theory Analysis of Antibody-Antigen Reactivity Data: The Immune Trees at Birth and Adulthood. PLoS ONE, 2011, 6, e17445.	2.5	35
141	In Vivo Induction of Tr1 Cells via Mucosal Dendritic Cells and AHR Signaling. PLoS ONE, 2011, 6, e23618.	2.5	89
142	Say "adios―to the American dream? The interplay between ethnic and national identity among Latino and Caucasian Americans Cultural Diversity and Ethnic Minority Psychology, 2010, 16, 37-49.	2.0	71
143	Oral Administration of OKT3 Monoclonal Antibody to Human Subjects Induces a Dose-Dependent Immunologic Effect in T Cells and Dendritic Cells. Journal of Clinical Immunology, 2010, 30, 167-177.	3.8	69
144	The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nature Immunology, 2010, 11, 854-861.	14.5	651

FRANCISCO J QUINTANA

#	Article	IF	CITATIONS
145	Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell–like and Foxp3+ regulatory T cells. Nature Immunology, 2010, 11, 846-853.	14.5	407
146	Adaptive Autoimmunity and Foxp3-Based Immunoregulation in Zebrafish. PLoS ONE, 2010, 5, e9478.	2.5	83
147	An endogenous aryl hydrocarbon receptor ligand acts on dendritic cells and T cells to suppress experimental autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20768-20773.	7.1	367
148	Cutting Edge: Human Latency-Associated Peptide+ T Cells: A Novel Regulatory T Cell Subset. Journal of Immunology, 2010, 184, 4620-4624.	0.8	89
149	T and B cell hyperactivity and autoimmunity associated with niche-specific defects in apoptotic body clearance in TIM-4-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8706-8711.	7.1	163
150	Tim-3/Galectin-9 Pathway: Regulation of Th1 Immunity through Promotion of CD11b+Ly-6G+ Myeloid Cells. Journal of Immunology, 2010, 185, 1383-1392.	0.8	243
151	A Systems Immunology Approach to the Host-Tumor Interaction: Large-Scale Patterns of Natural Autoantibodies Distinguish Healthy and Tumor-Bearing Mice. PLoS ONE, 2009, 4, e6053.	2.5	36
152	Organization of the autoantibody repertoire in healthy newborns and adults revealed by system level informatics of antigen microarray data. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14484-14489.	7.1	87
153	Toll-like receptor stimulation differentially regulates vasoactive intestinal peptide type 2 receptor in macrophages. Journal of Cellular and Molecular Medicine, 2009, 13, 3209-3217.	3.6	18
154	Environmental control of Th17 differentiation. European Journal of Immunology, 2009, 39, 655-657.	2.9	20
155	Toll-like receptor 2 and poly(ADP-ribose) polymerase 1 promote central nervous system neuroinflammation in progressive EAE. Nature Immunology, 2009, 10, 958-964.	14.5	183
156	Regulatory T cells and immune computation. European Journal of Immunology, 2008, 38, 903-907.	2.9	12
157	Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature, 2008, 453, 65-71.	27.8	1,544
158	Systems biology approaches for the study of multiple sclerosis. Journal of Cellular and Molecular Medicine, 2008, 12, 1087-1093.	3.6	20
159	Nasal Anti-CD3 Antibody Ameliorates Lupus by Inducing an IL-10-Secreting CD4+CD25â^'LAP+ Regulatory T Cell and Is Associated with Down-Regulation of IL-17+CD4+ICOS+CXCR5+ Follicular Helper T Cells. Journal of Immunology, 2008, 181, 6038-6050.	0.8	127
160	Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18889-18894.	7.1	231
161	HSP60 Speaks to the Immune System in Many Voices. Novartis Foundation Symposium, 2008, 291, 101-114.	1.1	14
162	Reversal of axonal loss and disability in a mouse model of progressive multiple sclerosis. Journal of Clinical Investigation, 2008, 118, 1532-1543.	8.2	193

#	Article	IF	CITATIONS
163	Induction of IgG3 to LPS via Toll-Like Receptor 4 Co-Stimulation. PLoS ONE, 2008, 3, e3509.	2.5	31
164	HSP60 as a Target of Anti-Ergotypic Regulatory T Cells. PLoS ONE, 2008, 3, e4026.	2.5	34
165	Response to "Interaction between HIV gp41 fusion peptide and T cell receptor: putting the puzzle pieces back together― FASEB Journal, 2007, 21, 1635-1635.	0.5	Ο
166	Tâ€Cell inactivation and immunosuppressive activity induced by HIV gp41 via novel interacting motif. FASEB Journal, 2007, 21, 393-401.	0.5	40
167	Ectopic PDX-1 expression in liver ameliorates type 1 diabetes. Journal of Autoimmunity, 2007, 28, 134-142.	6.5	72
168	A Structurally Altered d,l-Amino Acid TCRα Transmembrane Peptide Interacts with the TCRα and Inhibits T-Cell Activation in Vitro and in an Animal Model. Biochemistry, 2007, 46, 2317-2325.	2.5	25
169	Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. Journal of Clinical Investigation, 2007, 117, 712-718.	8.2	204
170	NAP, a Peptide Derived from the Activityâ€Dependent Neuroprotective Protein, Modulates Macrophage Function. Annals of the New York Academy of Sciences, 2006, 1070, 500-506.	3.8	36
171	Understanding natural and pathological autoimmunity. Journal of Neuroimmunology, 2006, 174, 1-2.	2.3	10
172	Peptide p277 of HSP60 signals T cells: inhibition of inflammatory chemotaxis. International Immunology, 2006, 18, 1413-1419.	4.0	39
173	Heat Shock Proteins Regulate Inflammation by Both Molecular and Network Cross-Reactivity. , 2005, , 263-287.		5
174	DNA vaccines coding for heat-shock proteins (HSPs): tools for the activation of HSP-specific regulatory T cells. Expert Opinion on Biological Therapy, 2005, 5, 545-554.	3.1	16
175	Dâ€enantiomer peptide of the TCRa transmembrane domain inhibits Tâ€ɛell activation in vitro and in vivo. FASEB Journal, 2005, 19, 1190-1192.	0.5	39
176	Heat Shock Proteins as Endogenous Adjuvants in Sterile and Septic Inflammation. Journal of Immunology, 2005, 175, 2777-2782.	0.8	234
177	Anti-ergotypic T cells in na $ ilde{A}$ -ve rats. Journal of Autoimmunity, 2005, 24, 191-201.	6.5	14
178	HIV-1 fusion peptide targets the TCR and inhibits antigen-specific T cell activation. Journal of Clinical Investigation, 2005, 115, 2149-2158.	8.2	60
179	Functional immunomics: Microarray analysis of IgG autoantibody repertoires predicts the future response of mice to induced diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14615-14621.	7.1	146
180	Inhibition of adjuvant-induced arthritis by DNA vaccination with the 70-kd or the 90-kd human heat-shock protein: Immune cross-regulation with the 60-kd heat-shock protein. Arthritis and Rheumatism, 2004, 50, 3712-3720.	6.7	75

#	Article	IF	CITATIONS
181	Angiogenesis-Inflammation Cross-Talk: Vascular Endothelial Growth Factor Is Secreted by Activated T Cells and Induces Th1 Polarization. Journal of Immunology, 2004, 172, 4618-4623.	0.8	253
182	The natural autoantibody repertoire and autoimmune disease. Biomedicine and Pharmacotherapy, 2004, 58, 276-281.	5.6	61
183	Knock-out of the histidine decarboxylase gene modifies the repertoire of natural autoantibodies. Journal of Autoimmunity, 2004, 22, 297-305.	6.5	23
184	DNA vaccination with CD25 protects rats from adjuvant arthritis and induces an antiergotypic response. Journal of Clinical Investigation, 2004, 113, 924-932.	8.2	33
185	Tregs in T cell vaccination: exploring the regulation of regulation. Journal of Clinical Investigation, 2004, 114, 1227-1232.	8.2	58
186	Tregs in T cell vaccination: exploring the regulation of regulation. Journal of Clinical Investigation, 2004, 114, 1227-1232.	8.2	34
187	DNA vaccination with CD25 protects rats from adjuvant arthritis and induces an antiergotypic response. Journal of Clinical Investigation, 2004, 113, 924-932.	8.2	15
188	Placental immunomodulator ferritin, a novel immunoregulator, suppresses experimental arthritis. Arthritis and Rheumatism, 2003, 48, 846-853.	6.7	29
189	Cluster analysis of human autoantibody reactivities in health and in type 1 diabetes mellitus: a bio-informatic approach to immune complexity. Journal of Autoimmunity, 2003, 21, 65-75.	6.5	50
190	DNA Fragments of the Human 60-kDa Heat Shock Protein (HSP60) Vaccinate Against Adjuvant Arthritis: Identification of a Regulatory HSP60 Peptide. Journal of Immunology, 2003, 171, 3533-3541.	0.8	86
191	Experimental autoimmune myasthenia gravis in naive non-obese diabetic (NOD/LtJ) mice: susceptibility associated with natural IgG antibodies to the acetylcholine receptor. International Immunology, 2003, 15, 11-16.	4.0	10
192	Autoimmune Encephalomyelitis and Uveitis Induced by T Cell Immunity to Self β-Synuclein. Journal of Immunology, 2003, 170, 628-634.	0.8	37
193	DNA Vaccination with Heat Shock Protein 60 Inhibits Cyclophosphamide-Accelerated Diabetes. Journal of Immunology, 2002, 169, 6030-6035.	0.8	69
194	Inhibition of Adjuvant Arthritis by a DNA Vaccine Encoding Human Heat Shock Protein 60. Journal of Immunology, 2002, 169, 3422-3428.	0.8	99
195	Autoantibody Patterns in Diabetes-prone NOD Mice and in Standard C57BL/6 Mice. Journal of Autoimmunity, 2001, 17, 191-197.	6.5	39
196	Vaccination with Empty Plasmid DNA or CpG Oligonucleotide Inhibits Diabetes in Nonobese Diabetic Mice: Modulation of Spontaneous 60-kDa Heat Shock Protein Autoimmunity. Journal of Immunology, 2000, 165, 6148-6155.	0.8	145
197	Acceleration of Autoimmune Diabetes by Cyclophosphamide is Associated with an Enhanced IFN-Î ³ Secretion Pathway. Journal of Autoimmunity, 1999, 13, 383-392.	6.5	44
198	Neuro-immune crosstalk in drug-resistant epilepsy. Nature Neuroscience, 0, , .	14.8	2