Anish Roy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1511663/publications.pdf

Version: 2024-02-01

159 papers	3,222 citations	29 h-index	197535 49 g-index
162	162	162	2889
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Drilling in carbon/epoxy composites: Experimental investigations and finite element implementation. Composites Part A: Applied Science and Manufacturing, 2013, 47, 41-51.	3.8	234
2	Size effects and idealized dislocation microstructure at small scales: Predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics: Part I. Journal of the Mechanics and Physics of Solids, 2006, 54, 1687-1710.	2.3	138
3	Finite element approximation of field dislocation mechanics. Journal of the Mechanics and Physics of Solids, 2005, 53, 143-170.	2.3	108
4	Effect of ultrasonically-assisted drilling on carbon-fibre-reinforced plastics. Journal of Sound and Vibration, 2014, 333, 5939-5952.	2.1	102
5	Enhanced ultrasonically assisted turning of a \hat{l}^2 -titanium alloy. Ultrasonics, 2013, 53, 1242-1250.	2.1	87
6	Enhanced machinability of SiC-reinforced metal-matrix composite with hybrid turning. Journal of Materials Processing Technology, 2019, 268, 149-161.	3.1	86
7	Analysis of a free machining $\hat{l}\pm\hat{l}^2$ titanium alloy using conventional and ultrasonically assisted turning. Journal of Materials Processing Technology, 2014, 214, 906-915.	3.1	82
8	Diet dependent metabolic responses in three generalist insect herbivores Spodoptera spp. Insect Biochemistry and Molecular Biology, 2016, 71, 91-105.	1.2	81
9	Size effects and idealized dislocation microstructure at small scales: Predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics: Part II. Journal of the Mechanics Meashyement oohe, Teansyerse Single Spin Asymmetry in < mml:math	2.3	78
10	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msup><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msup><mml:mo>+</mml:mo><mml:mi>p</mml:mi>ppppppppppppppp</mml:msup></mml:mrow><mml:mrow><mml:mi>p</mml:mi>p</mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml< td=""><td>no2.9</td><td>73 <!--</td--></td></mml<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:mrow>	no2.9	73 </td
11	stretchy="false">/ <mml:msup><mml:mrow><mml:mi>Z</mml:mi></mml:mrow><mml. 2015,="" 800-807.<="" 85,="" and="" carbon="" design,="" effect="" epoxy="" fibre="" fracture="" interface:="" materials="" of="" physica="" shear="" strength="" surface="" td="" toughness="" treatment.=""><td>3.3</td><td>67</td></mml.></mml:msup>	3.3	67
12	Improved analytical prediction of chip formation in orthogonal cutting of titanium alloy Ti6Al4V. International Journal of Mechanical Sciences, 2017, 133, 357-367.	3.6	63
13	FE/SPH modelling of orthogonal micro-machining of f.c.c. single crystal. Computational Materials Science, 2013, 78, 104-109.	1.4	61
14	Experimental and Numerical Investigations in Conventional and Ultrasonically Assisted Drilling of CFRP Laminate. Procedia CIRP, 2012, 1, 455-459.	1.0	58
15	and <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/Math/Math/Mil">display="inline"><mml:mi>i</mml:mi></mml:math> Meson in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Au</mml:mi>Au<mml:mo>+</mml:mo><mml:mi>Au</mml:mi>AuCollisions</mml:math 	2.9	58
16	Machinability of natural-fibre-reinforced polymer composites: Conventional vs ultrasonically-assisted machining. Composites Part A: Applied Science and Manufacturing, 2019, 119, 188-195.	3.8	58
17	Anterior hippocampal dysconnectivity in posttraumatic stress disorder: a dimensional and multimodal approach. Translational Psychiatry, 2017, 7, e1045-e1045.	2.4	54
18	Continuum modeling of dislocation interactions: Why discreteness matters?. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 653-661.	2.6	49

#	Article	IF	CITATIONS
19	Detection of rain-on-snow (ROS) events and ice layer formation using passive microwave radiometry: A context for Peary caribou habitat in the Canadian Arctic. Remote Sensing of Environment, 2017, 189, 84-95.	4.6	49
20	Thermally enhanced ultrasonically assisted machining of Ti alloy. CIRP Journal of Manufacturing Science and Technology, 2014, 7, 159-167.	2.3	47
21	Surface-roughness Improvement in Ultrasonically Assisted Turning. Procedia CIRP, 2014, 13, 49-54.	1.0	47
22	In-situ SEM study of slip-controlled short-crack growth in single-crystal nickel superalloy. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 564-572.	2.6	47
23	Comparing Machinability of Ti-15-3-3-3 and Ni-625 Alloys in Uat. Procedia CIRP, 2012, 1, 330-335.	1.0	45
24	Strength prediction for bi-axial braided composites by a multi-scale modelling approach. Journal of Materials Science, 2016, 51, 6002-6018.	1.7	43
25	Low-cycle fatigue of single crystal nickel-based superalloy – mechanical testing and TEM characterisation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 744, 538-547.	2.6	43
26	A Finite Element Model of Ultrasonically Assisted Drilling in Carbon/Epoxy Composites. Procedia CIRP, 2013, 8, 141-146.	1.0	41
27	Braided textile composites for sports protection: Energy absorption and delamination in impact modelling. Materials and Design, 2017, 136, 258-269.	3.3	41
28	Hot Ultrasonically Assisted Turning of β-Ti Alloy. Procedia CIRP, 2012, 1, 336-341. Search for Î-mesic symplometh xmlnsymml="http://www.w3.org/1998/Math/Math/ML" altimg="sil.gif"	1.0	40
29	overflow="scroll"> <mml:mmultiscripts><mml:mrow><mml:mtext>He</mml:mtext></mml:mrow><mml:mprescrip><mml:mrow></mml:mrow></mml:mprescrip></mml:mmultiscripts> in the <mml:math altimg="si2.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>d</mml:mi>dd<td>o.6</td><td>33</td></mml:math>	o.6	33
30	Stretchy="false" > at' < /mmkmo> < mmkmmultiscripts> < mmkmrow> < mmkmtext> He < /mmkmtext> < /mmkmrow> < mmkmtext> He < /mmkmtext> < /mmkmrow> < mmkmtext> He < /mmkmtext> < /mmkmrow> < mmkmtext> He < /mmkmtext> < /mmkmtext> < /mmkmrow> < mmkmrow> < mmkmtext> He < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmkmtext> < /mmktext> <	3.6	31
31	Optimising curvature of carbon fibre-reinforced polymer composite panel for improved blast resistance: Finite-element analysis. Materials & Design, 2014, 57, 719-727.	5.1	30
32	Multiplicity and transverse momentum evolution of charge-dependent correlations in pp, p–Pb, and Pb–Pb collisions at the LHC. European Physical Journal C, 2016, 76, 86.	1.4	30
33	Improvements of machinability of aerospace-grade Inconel alloys with ultrasonically assisted hybrid machining. International Journal of Advanced Manufacturing Technology, 2019, 101, 1143-1156.	1.5	30
34	Numerical Modelling of Vibration-Assisted Turning of Ti-15333. Procedia CIRP, 2012, 1, 347-352.	1.0	28
35	Hybrid machining of metal-matrix composite. Procedia CIRP, 2019, 82, 184-189.	1.0	28
36	Ultrasonically assisted drilling of aerospace CFRP/Ti stacks. Procedia CIRP, 2018, 77, 383-386.	1.0	27

#	Article	lF	CITATIONS
37	Damage accumulation in braided textiles-reinforced composites under repeated impacts: Experimental and numerical studies. Composite Structures, 2018, 204, 256-267.	3.1	26
38	Comprehensive experimental analysis and sustainability assessment of machining Nimonic 90 using ultrasonic-assisted turning facility. International Journal of Advanced Manufacturing Technology, 2020, 109, 1447-1462.	1.5	26
39	Continuum theory and methods for coarse-grained, mesoscopic plasticity. Scripta Materialia, 2006, 54, 705-710.	2.6	25
40	Cutting forces in ultrasonically assisted drilling of carbon fibre-reinforced plastics. Journal of Physics: Conference Series, 2012, 382, 012019.	0.3	25
41	Modeling of normal force and finishing torque considering shearing and ploughing effects in ultrasonic assisted magnetic abrasive finishing process with sintered magnetic abrasive powder. Wear, 2017, 390-391, 11-22.	1.5	25
42	Coupling crystal plasticity and continuum damage mechanics for creep assessment in Cr-based power-plant steel. Mechanics of Materials, 2019, 130, 29-38.	1.7	25
43	Computational Study of Ultrasonically-Assisted Turning of Ti Alloys. Advanced Materials Research, 2011, 223, 30-36.	0.3	24
44	Temperature-dependent crystal-plasticity model for magnesium: A bottom-up approach. Mechanics of Materials, 2017, 113, 44-56.	1.7	24
45	Numerical modelling of micro-machining of f.c.c. single crystal: Influence of strain gradients. Computational Materials Science, 2014, 94, 273-278.	1.4	23
46	Finite element analysis of drilling in carbon fiber reinforced polymer composites. Journal of Physics: Conference Series, 2012, 382, 012014.	0.3	22
47	Phenomenological mesoscopic field dislocation mechanics, lower-order gradient plasticity, and transport of mean excess dislocation density. Modelling and Simulation in Materials Science and Engineering, 2007, 15, S167-S180.	0.8	21
48	Analysis of Forces in Vibro-Impact and Hot Vibro-Impact Turning of Advanced Alloys. Applied Mechanics and Materials, 0, 70, 315-320.	0.2	21
49	Measurement of the $\operatorname{soverrightarrow}\{n\}$ pightarrow dpi $\left\{0\right\}$ pi $\left\{0\right\}$ \$ reaction with polarized beam in the region of the d*(2380) resonance. European Physical Journal A, 2016, 52, 1.	1.0	21
50	Comparison of plane-stress, generalized-plane-strain and 3D FEM elastic–plastic analyses of thick-walled cylinders subjected to radial thermal gradient. International Journal of Mechanical Sciences, 2017, 131-132, 744-752.	3.6	21
51	Hybrid machining process: experimental and numerical analysis of hot ultrasonically assisted turning. International Journal of Advanced Manufacturing Technology, 2018, 97, 2173-2192.	1.5	21
52	Indentation studies in b.c.c. crystals with enhanced model of strain-gradient crystal plasticity. Computational Materials Science, 2013, 79, 896-902.	1.4	20
53	Indentation in single-crystal 6H silicon carbide: Experimental investigations and finite element analysis. International Journal of Mechanical Sciences, 2018, 144, 858-864.	3.6	20
54	Analysis of Machinability of Ti- and Ni-Based Alloys. Solid State Phenomena, 0, 188, 330-338.	0.3	19

#	Article	IF	CITATIONS
55	Finite Element Modelling of Conventional and Hybrid Oblique Turning Processes of Titanium Alloy. Procedia CIRP, 2013, 8, 510-515.	1.0	19
56	Modeling of Micro-machining Single-crystal f.c.c. Metals. Procedia CIRP, 2013, 8, 346-350.	1.0	18
57	Accurate determination of black-body radiation shift, magic and tune-out wavelengths for the $6S < sub > 1/2 < sub > sub > 3/2 < sub > clock transition in Yb < sup > + < sup > . Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 205201.$	0.6	18
58	Multi-objective optimization of ultrasonic-assisted magnetic abrasive finishing process. International Journal of Advanced Manufacturing Technology, 2019, 101, 1661-1670.	1.5	18
59	Analytical prediction of shear angle and frictional behaviour in vibration-assisted cutting. Journal of Manufacturing Processes, 2021, 62, 37-46.	2.8	17
60	Ultrasonically Assisted Drilling of Carbon Fibre Reinforced Plastics. Solid State Phenomena, 2012, 188, 170-175.	0.3	16
61	Influence of strain gradients on lattice rotation in nano-indentation experiments: A numerical study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 608, 73-81.	2.6	16
62	Turning of Advanced Alloys with Vibrating Cutting Tool. Solid State Phenomena, 2012, 188, 277-284.	0.3	15
63	The provision of care to adults with an intellectual disability in the UK. A Special report from the intellectual disability UK chapter ILAE. Seizure: the Journal of the British Epilepsy Association, 2018, 56, 41-46.	0.9	15
64	Hybrid-hybrid machining of SiC-reinforced aluminium metal matrix composite. Manufacturing Letters, 2022, 32, 63-66.	1.1	15
65	Modeling dislocation sources and size effects at initial yield in continuum plasticity. Journal of Mechanics of Materials and Structures, 2009, 4, 1603-1618.	0.4	14
66	Modelling of Damage Evolution in Braided Composites: Recent Developments. Mechanics of Advanced Materials and Modern Processes, 2017, 3, .	2.2	14
67	Experimental studies of shear bands in Zr-Cu metallic glass. Journal of Non-Crystalline Solids, 2018, 484, 40-48.	1.5	14
68	Modeling of finishing force and torque in ultrasonic-assisted magnetic abrasive finishing process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233, 411-425.	1.5	14
69	Measurement of the ω→π+Ï€â^'Ï€0 Dalitz plot distribution. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 770, 418-425.	1.5	13
70	Ballistic impact behaviour of woven fabric composite: Finite element analysis and experiments. Journal of Physics: Conference Series, 2013, 451, 012019.	0.3	12
71	Modelling of Vibration Assisted Machining f.c.c Single Crystal. Procedia CIRP, 2015, 31, 393-398.	1.0	12
72	Search for an isospin I= 3 dibaryon. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2016, 762, 455-461.	1.5	12

#	Article	IF	Citations
73	Measurements of branching ratios for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>\hat{l}</mml:mi></mml:math> decays into charged particles. Physical Review C, 2016, 94, .	1.1	12
74	Impact of polyurea-coated metallic targets: Computational framework. Composite Structures, 2021, 267, 113893.	3.1	12
75	Size-dependent crystal plasticity: From micro-pillar compression to bending. Mechanics of Materials, 2016, 100, 31-40.	1.7	11
76	Development and validation of the Learning Disabilities Needs Assessment Tool (LDNAT), a HoNOSâ€based needs assessment tool for use with people with intellectual disability. Journal of Intellectual Disability Research, 2016, 60, 1178-1188.	1.2	11
77	Strain-gradient crystal-plasticity modelling of micro-cutting of b.c.c. single crystal. Meccanica, 2016, 51, 371-381.	1.2	11
78	A crystal-plasticity model of extruded AM30 magnesium alloy. Computational Materials Science, 2019, 170, 109140.	1.4	11
79	Evidence of Formation of Superdense Nonmagnetic Cobalt. Scientific Reports, 2017, 7, 41856.	1.6	10
80	3D DDD modelling of dislocation–precipitate interaction in a nickel-based single crystal superalloy under cyclic deformation. Philosophical Magazine, 2018, 98, 1550-1575.	0.7	10
81	Mechanical Behavior of Silicon Carbide Under Static and Dynamic Compression. Journal of Engineering Materials and Technology, Transactions of the ASME, 2019, 141, .	0.8	10
82	Ti Alloy with Enhanced Machinability in UAT Turning. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2768-2775.	1.1	9
83	Ice vs. steel: Ballistic impact of woven carbon/epoxy composites. Part II – Numerical modelling. Engineering Fracture Mechanics, 2020, 225, 106297.	2.0	9
84	Indentation in F.C.C. Single Crystals. Solid State Phenomena, 2012, 188, 219-225.	0.3	8
85	Ultrasonically assisted turning of Ti-6Al-2Sn-4Zr-6Mo. Journal of Physics: Conference Series, 2012, 382, 012016.	0.3	8
86	Ultrasonically assisted drilling in marble. Journal of Sound and Vibration, 2019, 460, 114880.	2.1	8
87	Modeling of friction in manufacturing processes. , 2020, , 415-444.		8
88	Effect of Machining on Shear-Zone Microstructure in Ti-15V-3Cr-3Al-3Sn: Conventional and Ultrasonically Assisted Turning. Journal of Materials Engineering and Performance, 2016, 25, 3766-3773.	1.2	7
89	Ice vs. steel: Ballistic impact of woven carbon/epoxy composites. Part I – Deformation and damage behaviour. Engineering Fracture Mechanics, 2020, 225, 106270.	2.0	7
90	Ultrasonically Assisted Machining of Titanium Alloys. Materials Forming, Machining and Tribology, 2014, , 131-147.	0.7	7

#	Article	IF	Citations
91	Finite-Element Simulations of Split Hopkinson Test of Ti-Based Alloy. Advanced Materials Research, 0, 223, 296-303.	0.3	6
92	Drilling-Induced Damage in CFRP Laminates: Experimental and Numerical Analysis. Solid State Phenomena, 2012, 188, 150-157.	0.3	6
93	Plastic deformation of multicrystalline thin films: Grain size distribution vs. grain orientation. Computational Materials Science, 2012, 52, 20-24.	1.4	6
94	Variation of cutting forces in machining of f.c.c. single crystals. Acta Mechanica, 2016, 227, 3-9.	1.1	6
95	Impact damage in woven carbon fibre/epoxy laminates: analysis of damage and dynamic strain fields. Procedia Engineering, 2017, 199, 2500-2505.	1.2	6
96	Production of high-quality extremely-thin histological sections by ultrasonically assisted cutting. Journal of Materials Processing Technology, 2020, 276, 116403.	3.1	6
97	Challenges and issues in continuum modelling of tribology, wear, cutting and other processes involving high-strain rate plastic deformation of metals. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 130, 105185.	1.5	6
98	Application of Smooth-Particle Hydrodynamics in Metal Machining. Journal of Physics: Conference Series, 2012, 382, 012017.	0.3	5
99	Ultrasonically Assisted Drilling: Machining towards Improved Structural Integrity in Carbon/Epoxy Composites. Key Engineering Materials, 0, 569-570, 49-55.	0.4	5
100	Indentation-induced deformation localisation in Zr–Cu-based metallic glass. Journal of Alloys and Compounds, 2014, 615, S93-S97.	2.8	5
101	Ultrasonically-assisted Polymer Molding: An Evaluation. Physics Procedia, 2016, 87, 61-71.	1.2	4
102	Modelling plastic deformation in a single-crystal nickel-based superalloy using discrete dislocation dynamics. Mechanics of Advanced Materials and Modern Processes, 2016, 2, .	2.2	4
103	Dynamic Fracture in Carbon-fibre Composites: Effect of Steel and Ice Projectiles. Procedia Structural Integrity, 2016, 2, 366-372.	0.3	4
104	Enhanced gradient crystal-plasticity study of size effects in \hat{a}^2 -titanium alloy. Modelling and Simulation in Materials Science and Engineering, 2017, 25, 035013.	0.8	4
105	Status of the development of Delhi Light Source (DLS) at IUAC. Nuclear Instruments & Methods in Physics Research B, 2017, 402, 358-363.	0.6	4
106	Dynamic damage in woven carbon/epoxy composites due to air blast. Procedia Structural Integrity, 2017, 6, 5-10.	0.3	4
107	Ultrasonically assisted drilling of rocks. AIP Conference Proceedings, 2018, , .	0.3	4
108	A multiscale-indentation study of deformation and fracture in 6H polycrystalline silicon carbide. Materials Science and Technology, 2020, 36, 1111-1124.	0.8	4

#	Article	IF	Citations
109	Analysis of tool wear in ultrasonically assisted turning of -Ti-15V-3Al-3Cr-3Sn alloy. Scientia Iranica, 2016, 23, 1800-1810.	0.3	4
110	Deformation response and microstructural evolution of as-cast Mg alloys AM30 and AM50 during hot compression. International Journal of Materials Research, 2019, 110, 524-533.	0.1	4
111	Modelling the dynamic behaviour of hard-to-cut alloys under conditions of vibro-impact cutting. Journal of Physics: Conference Series, 2013, 451, 012030.	0.3	3
112	Vibration-assisted machining of single crystal. Journal of Physics: Conference Series, 2013, 451, 012038.	0.3	3
113	Ballistic damage in hybrid composite laminates. Journal of Physics: Conference Series, 2015, 628, 012092.	0.3	3
114	Hybrid Cutting of Bio-tissues. Procedia CIRP, 2016, 46, 567-570.	1.0	3
115	Analysis of pulsed electroplasticity in metals., 2017,,.		3
116	Effect of hybrid machining on structural integrity of aerospace-grade materials. Procedia CIRP, 2018, 77, 163-166.	1.0	3
117	Importance of d-wave contributions in the charge symmetry breaking reaction dd→4Heπ0. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 781, 645-650.	1.5	3
118	Shear band widening mechanism in Ti–6Al–4V under high strain rate deformation. Journal of Materials Research, 2020, 35, 1623-1634.	1.2	3
119	Unprecedented hardness of polycrystalline diamond via laser surface engineering. Surface and Coatings Technology, 2021, 419, 127302.	2.2	3
120	Polyurea-coated glass-fibre-reinforced laminate under high-speed impact: experimental study. Procedia Structural Integrity, 2020, 28, 1572-1578.	0.3	3
121	Numerical modelling of size effects in micro-cutting of f.c.c. single crystal: Influence of strain gradients. Journal of Manufacturing Processes, 2022, 74, 511-519.	2.8	3
122	Blast response of curved carbon/epoxy composite panels: Experimental study and finite-element analysis. Journal of Physics: Conference Series, 2013, 451, 012018.	0.3	2
123	Ultrasonically assisted drilling: A finite-element model incorporating acoustic softening effects. Journal of Physics: Conference Series, 2013, 451, 012040.	0.3	2
124	Crystal-Plasticity Simulation ofÂMicromachining of Single-Crystal Metal:ÂMethodology and Analysis. Advanced Structured Materials, 2016, , 165-183.	0.3	2
125	A new type of RPC with very low resistive material. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 936, 424-426.	0.7	2
126	Finite element simulations of conventional and ultrasonically assisted turning processes with plane and textured cutting inserts. Journal of Micromanufacturing, 2020, 3, 54-68.	0.6	2

#	Article	IF	CITATIONS
127	Nanoscale investigation of deformation characteristics in a polycrystalline silicon carbide. Journal of the Australian Ceramic Society, 2020, 56, 951-967.	1.1	2
128	Modelling strain localization in Ti–6Al–4V at high loading rate: a phenomenological approach. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190105.	1.6	2
129	Deformation Characteristics in Micromachining of Single Crystal 6H-SiC: Insight into Slip Systems Activation. Journal of Mechanics, 2020, 36, 245-253.	0.7	2
130	Repetitive indentation of Ti-based alloys: A numerical study. IOP Conference Series: Materials Science and Engineering, 2010, 10, 012105.	0.3	1
131	Numerical analysis and noise detection for design optimisation of an ultrasonic transducer. Journal of Physics: Conference Series, 2012, 382, 012062.	0.3	1
132	Effect of Plate Curvature on Blast Response of Carbon/Epoxy Composite. Key Engineering Materials, 0, 569-570, 41-48.	0.4	1
133	Ultrasonically Assisted Cutting of Bio-tissues in Microtomy. Physics Procedia, 2016, 87, 118-124.	1.2	1
134	Data set for diet specific differential gene expression analysis in three Spodoptera moths. Data in Brief, 2016, 8, 448-455.	0.5	1
135	Dynamic damage in FRPs. , 2016, , 193-222.		1
136	Micro CT Analysis of Dynamic Damage in Laminates: Impact vs. blast loading. Journal of Physics: Conference Series, 2017, 842, 012077.	0.3	1
137	On Relationship of Parameters in the Processes of Destruction, Implemented at Various Scale Levels. Proceedings of the Academy of Sciences, 2018, 483, 265-267.	0.1	1
138	Higher-Order Mesoscopic Theories of Plasticity Based on Discrete Dislocation Interactions. Advances in Mechanics and Mathematics, 2010, , 245-250.	0.2	0
139	Dynamic Behavior of Advanced Ti Alloy under Impact Loading: Experimental and Numerical Analysis. Applied Mechanics and Materials, 0, 70, 207-212.	0.2	0
140	Quasi-static and dynamic deformation behaviour of Zr-based bulk metallic glass. Journal of Physics: Conference Series, 2013, 451, 012009.	0.3	0
141	Bulk Metallic Glasses: Mechanical Properties and Performance. Engineering Materials, 2015, , 101-134.	0.3	0
142	Magneto-forming studies. , 2017, , .		0
143	Ultrasonic Assisted Turning: A Comparative Study of Surface Integrity. Lecture Notes on Multidisciplinary Industrial Engineering, 2018, , 337-360.	0.4	0
144	Relations between Parameters of Fracture Processes on Different Scale Levels. Doklady Physics, 2018, 63, 459-461.	0.2	0

#	Article	IF	Citations
145	Single Trapped ¹⁷¹ Yb ⁺ for Optical Frequency Standards., 2019,,.		0
146	Machining in monocrystals. , 2020, , 243-267.		0
147	Mechanics of ultrasonically assisted drilling. , 2020, , 229-241.		0
148	A numerical study on influence of strain gradients on lattice rotation in micro-machining of a single crystal. Challenge Journal of Structural Mechanics, 2021, 7, 117.	0.2	0
149	Analysis of delamination of composite laminates via extended finite element method based on the layerwise displacement theory and cohesive zone method. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 0, , 146442072110461.	0.7	0
150	Crystalline Deformation in the Small Scale. Engineering Materials, 2015, , 23-42.	0.3	0
151	Estimation of cutting forces in conventional and ultrasonic-vibration assisted turning using inverse modelling. International Journal of Additive and Subtractive Materials Manufacturing, 2017, 1, 265.	0.2	0
152	Small-Scale Machining Simulations. Lecture Notes on Multidisciplinary Industrial Engineering, 2019, , 349-362.	0.4	0
153	Initiation and growth of short cracks in a nickel-based single crystal superalloy. , 2019, , 388-391.		0
154	Vibration-assisted robotic machining in advanced materials. , 2019, , 408-409.		0
155	Deformation characteristics in 6h silicon carbide – effects of length scale and irradiation. , 2019, , 371-374.		0
156	Simulations of Machining Processes at Small Spatio-temporal Scales. , 2021, , 241-254.		0
157	Ballistic performance of polyurea-coated thin aluminium plates: numerical study. Procedia Structural Integrity, 2020, 28, 1258-1266.	0.3	0
158	Ultrasonically Assisted Cutting of Histological Sections for ÂReducing the Environmental and Financial Impact of Microtomy. Chinese Journal of Mechanical Engineering (English Edition), 2022, 35, .	1.9	0
159	A study on the effectiveness of explosive reactive armour against the penetration of long-rod projectiles. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622210814.	1.1	0