Dimas Roberto Vollet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1511570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermodynamic properties of liquid mixtures. II. Dimethylformamide-water. Thermochimica Acta, 1983, 63, 151-156.	2.7	37
2	A dissolution and reaction modeling for hydrolysis of TEOS in heterogeneous TEOS–water–HCl mixtures under ultrasound stimulation. Ultrasonics Sonochemistry, 2002, 9, 133-138.	8.2	37
3	A SAXS study of kinetics of aggregation of TEOS-derived sonogels at different temperatures. Journal of Non-Crystalline Solids, 2001, 288, 81-87.	3.1	35
4	Effects of HCl on the ultrasound catalyzed TEOS hydrolysis as determined by a calorimetric study. Journal of Non-Crystalline Solids, 1996, 208, 99-104.	3.1	31
5	Comparative study using small-angle x-ray scattering and nitrogen adsorption in the characterization of silica xerogels and aerogels. Physical Review B, 2004, 69, .	3.2	24
6	A SAXS study of the nanostructural characteristics of TEOS-derived sonogels upon heat treatment up to 1100 ŰC. Journal of Non-Crystalline Solids, 2002, 306, 11-16.	3.1	22
7	Thermodynamic properties of liquid mixtures. III. Acetone—water. Thermochimica Acta, 1983, 66, 219-223.	2.7	21
8	Mass and Surface Fractal in Supercritical Dried Silica Aerogels Prepared with Additions of Sodium Dodecyl Sulfate. Langmuir, 2015, 31, 562-568.	3.5	21
9	From sol to aerogel: a study of the nanostructural characteristics of TEOS derived sonogels. Journal of Non-Crystalline Solids, 2001, 292, 44-49.	3.1	20
10	Structural evolution of aerogels prepared from TEOS sono-hydrolysis upon heat treatment up to 1100 °C. Journal of Non-Crystalline Solids, 2003, 332, 73-79.	3.1	20
11	About the thermal stability and pore elimination in the ordered hexagonal mesoporous silica SBA-15. Microporous and Mesoporous Materials, 2014, 190, 227-233.	4.4	19
12	A calorimetric study of the ultrasound-stimulated hydrolysis of solventless TEOS-water mixtures. Journal of Sol-Gel Science and Technology, 1995, 4, 99-105.	2.4	18
13	Effects of Temperature and of the Addition of Accelerating and Retarding Agents on the Kinetics of Hydration of Tricalcium Silicate. Journal of Physical Chemistry B, 2000, 104, 12143-12148.	2.6	18
14	Mass fractal characteristics of sonogels prepared from sonohydrolysis of tetraethoxysilane with additions of dimethylformamide. Journal of Non-Crystalline Solids, 2007, 353, 143-150.	3.1	18
15	Structural characteristics of silica sonogels prepared with different proportions of TEOS and TMOS. Journal of Non-Crystalline Solids, 2008, 354, 1467-1474.	3.1	17
16	Structural modifications in stretchâ€induced crystallization in PVDF films as measured by smallâ€angle Xâ€ray scattering. Journal of Applied Polymer Science, 2012, 125, 527-535.	2.6	17
17	Random laser emission from a Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel. Laser Physics Letters, 2017, 14, 065801.	1.4	17
18	Structure and thermal stability in hydrophobic Pluronic F127-modified silica aerogels. Microporous and Mesoporous Materials, 2018, 267, 242-248.	4.4	17

#	Article	IF	CITATIONS
19	Small angle X-ray scattering study of structural changes in silica gel modified with organofunctional groups. Colloids and Surfaces, 1989, 40, 1-8.	0.9	16
20	Title is missing!. Journal of Sol-Gel Science and Technology, 2000, 18, 5-9.	2.4	16
21	Structure of Hydrophobic Ambient-Pressure-Dried Aerogels Prepared by Sonohydrolysis of Tetraethoxysilane with Additions of <i>N</i> , <i>N</i>)Dimethylformamide. Langmuir, 2014, 30, 1151-1159.	3.5	15
22	Pore structure characterization of kaolin, metakaolin, and their acid-treated products using small-angle X-ray scattering. Applied Clay Science, 1994, 8, 397-404.	5.2	14
23	A kinetic model for the ultrasound catalyzed hydrolysis of solventless TEOS-water mixtures and the role of the initial additions of ethanol. Journal of Sol-Gel Science and Technology, 1996, 6, 57-63.	2.4	14
24	Mass fractal characteristics of silica sonogels as determined by small-angle x-ray scattering and nitrogen adsorption. Physical Review B, 2005, 71, .	3.2	14
25	Dynamical scaling in fractal structures in the aggregation of tetraethoxysilane-derived sonogels. Journal of Applied Crystallography, 2010, 43, 949-954.	4.5	13
26	Calorimetric Study of the Effect of Water Quantity on Tetramethoxysilane Hydrolysis under Ultrasound Stimulation. Journal of Physical Chemistry B, 2003, 107, 3091-3094.	2.6	12
27	Mass fractal characteristics of wet sonogels as determined by small-angle x-ray scattering and differential scanning calorimetry. Physical Review B, 2006, 74, .	3.2	12
28	Study of the hydrolysis of TEOS-TMOS mixtures under ultrasound stimulation. Journal of Non-Crystalline Solids, 1996, 204, 301-304.	3.1	11
29	Structural changes induced by ultrasound during aging of the boehmite phase. Ultrasonics Sonochemistry, 1997, 4, 321-323.	8.2	11
30	Structural characteristics of gels prepared from sonohydrolysis and conventional hydrolysis of TEOS: an emphasis on the mass fractal as determined from the pore size distribution. Physica Status Solidi A, 2005, 202, 2700-2708.	1.7	11
31	Femtosecond laser fabrication of waveguides in Rhodamine B-doped GPTS/TEOS-derived organic/silica monolithic xerogel. Optical Materials, 2015, 47, 310-314.	3.6	11
32	Effects of the Water Quantity on the Solventless TEOS Hydrolysis Under Ultrasound Stimulation. Journal of Sol-Gel Science and Technology, 2000, 17, 19-24.	2.4	10
33	A kinetic study of the effect of ultrasound power on the sonohydrolysis of tetraethyl orthosilicate. Ultrasonics Sonochemistry, 2007, 14, 711-716.	8.2	10
34	High fluorescence quantum efficiency of CdSe/ZnS quantum dots embedded in GPTS/TEOS-derived organic/silica hybrid colloids. Chemical Physics Letters, 2014, 599, 63-67.	2.6	10
35	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 28, 31-35.	2.4	9
36	Structure and diffuse-boundary in hydrophobic and sodium dodecyl sulfate-modified silica aerogels. Microporous and Mesoporous Materials, 2016, 223, 196-202.	4.4	9

DIMAS ROBERTO VOLLET

#	Article	IF	CITATIONS
37	Photoluminescence tuning and energy transfer process from Tb3+ to Eu3+ in GPTMS/TEOS–derived organic/silica hybrid films. Journal of Luminescence, 2018, 197, 370-375.	3.1	9
38	Structural characterization of a tin oxyhydroxide gel and its precursor sol. Journal of Non-Crystalline Solids, 1992, 142, 181-184.	3.1	8
39	Hydrolysis Rates of TMOS Catalyzed by Oxalic Acid and Stimulated by Ultrasound. Journal of Sol-Gel Science and Technology, 1999, 15, 5-11.	2.4	8
40	Small-angle X-ray scattering and nitrogen adsorption study of the nanoporosity elimination in TEOS sonohydrolysis-derived xerogels. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 411-418.	1.8	8
41	Structural Modifications in Silica Sonogels Prepared with Additions of Poly(vinyl alcohol). Journal of Physical Chemistry C, 2008, 112, 3552-3557.	3.1	8
42	Small-Angle X-Ray Scattering from Hydrating Tricalcium Siliate. Journal of the American Ceramic Society, 1984, 67, 315-318.	3.8	7
43	Structural Characteristics of Silica Sonogels Prepared with Additions of Isopropyl Alcohol. Journal of Physical Chemistry B, 2006, 110, 21582-21587.	2.6	7
44	Effects of poly(vinyl alcohol) additions on the structure of silica xerogels. Journal of Non-Crystalline Solids, 2009, 355, 1561-1565.	3.1	7
45	About the nanoporosity elimination above 800 °C in xerogels prepared from TEOS sono-hydrolysis. Physica Status Solidi A, 2003, 196, 379-383.	1.7	6
46	Structural study of aged saturated silica gels obtained from tetramethoxysilane sonohydrolysis with different water/tetramethoxysilane molar ratio. Physical Review B, 2003, 67, .	3.2	6
47	A kinetic study of drying of TEOS-derived gels under nearly isothermal conditions. Materials Research, 1999, 2, 43-47.	1.3	5
48	Spectroscopic and thermal characterization in poly(p-phenylene vinylene)/sol–gel silica sample. Optical Materials, 2003, 24, 483-489.	3.6	5
49	A thermoporometry and small-angle x-ray scattering study of wet silica sonogels as the pore volume fraction is varied. Journal of Physics Condensed Matter, 2008, 20, 025225.	1.8	5
50	Structure and Growth Kinetics of 3-Glycidoxypropyltrimethoxysilane-Derived Organic/Silica Hybrids at Different Temperatures. Journal of Physical Chemistry C, 2012, 116, 24274-24280.	3.1	5
51	Small-Angle X-ray Scattering Study of the Thermal Decomposition of Magnesium Hydroxide. Journal of the American Ceramic Society, 1991, 74, 2683-2685.	3.8	4
52	Small angle X-ray scattering and IR spectroscopy study of metal carbonyl complexes immobilized on a silica gel surface chemically modified with piperazine. Polyhedron, 1996, 15, 4179-4183.	2.2	4
53	Monolithic diphasic gels of mullite by sol–gel process under ultrasound stimulation. Ultrasonics Sonochemistry, 1998, 5, 79-81.	8.2	4
54	Small-angle x-ray scattering study of the structural evolution of the drying of sonogels with the liquid phase exchanged by acetone. Physical Review B, 2004, 69, .	3.2	4

DIMAS ROBERTO VOLLET

#	Article	IF	CITATIONS
55	Structural study of composites of aerosil fumed silica and tetraethoxysilane-derived sonogels. Journal of Non-Crystalline Solids, 2005, 351, 1226-1231.	3.1	4
56	Structure and aggregation kinetics of vinyltriethoxysilane-derived organic/silica hybrids. Journal of Applied Crystallography, 2010, 43, 1005-1011.	4.5	4
57	Dynamic Scaling and Growth Kinetics of 3-Glycidoxypropyltrimethoxysilane-Derived Organic/Silica Hybrids. Macromolecules, 2011, 44, 6849-6855.	4.8	4
58	Structural features of silicas prepared in n-heptane/water/ethanol/sodium dodecylsulfate microemulsions. Microporous and Mesoporous Materials, 2012, 153, 204-209.	4.4	4
59	Effect of the temperature on the TMOS sono-hydrolysis and a study of the structure of the resulting aged sonogels. Journal of Non-Crystalline Solids, 2003, 324, 201-207.	3.1	3
60	Structural properties of silica gels prepared from oxalic-acid-catalyzed tetraethoxysilane sonohydrolysis. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1069-1076.	1.8	3
61	The aggregation process in tetraethoxysilane-derived sonogels as an analogy to the critical phenomenon. Journal of Physics Condensed Matter, 2008, 20, 255216.	1.8	3
62	Modifications in the correlation function in poly(vinyl alcohol)/silica hybrid wet gels. Journal of Applied Crystallography, 2009, 42, 10-14.	4.5	3
63	Fractal character of the SAXS correlation volume in poly(ethylene glycol)/silica hybrid wet gels. Journal of Sol-Gel Science and Technology, 2010, 54, 243-248.	2.4	3
64	Persistence Length, Mass Fractal, and Branching in the Aggregating of Vinyltriethoxysilane-Derived Organic/Silica Hybrids. Journal of Physical Chemistry C, 2011, 115, 667-671.	3.1	3
65	Running holograms in azopolymer films. Applied Physics B: Lasers and Optics, 2013, 111, 103-109.	2.2	3
66	Rod-like particles growing in sol–gel processing of 1:1 molar mixtures of 3-glycidoxypropyltrimethoxysilane and tetraethoxysilane. Journal of Applied Crystallography, 2017, 50, 489-497.	4.5	3
67	Alternative model for the fine porous structure in hydrated tricalcium silicate. Advances in Cement Research, 1988, 1, 107-111.	1.6	2
68	A Nonisothermal Study of the Kinetics of the Nanoporosity Elimination in Sonogels-derived Silica Xerogels. Journal of Physical Chemistry B, 2005, 109, 3893-3897.	2.6	2
69	Structural evolution up to 1100°C of xerogels prepared from TEOS sonohydrolysis and liquid phase exchanged by acetone. Journal of Non-Crystalline Solids, 2006, 352, 167-173.	3.1	2
70	Small-angle X-ray scattering from wet gels prepared from co-hydrolysis of tetraethoxysilane and vinyltriethoxysilane. Journal of Sol-Gel Science and Technology, 2009, 51, 222-227.	2.4	2
71	Temperature Effect on the Structure and Formation Kinetics of Vinyltriethoxysilane-Derived Organic/Silica Hybrids. Langmuir, 2011, 27, 10986-10992.	3.5	2
72	Structure and Kinetics of Formation of APTS/GPTS-Derived Organic/Inorganic Hybrids. Journal of Physical Chemistry C, 2013, 117, 17839-17844.	3.1	2

#	Article	IF	CITATIONS
73	Structural characteristics of P123-modified supercritical drying and hydrophobic ambient pressure drying aerogels. Journal of Non-Crystalline Solids, 2013, 376, 182-188.	3.1	2
74	An experimental verification of Newton's second law. Revista Brasileira De Ensino De Fisica, 2013, 35, 1-5.	0.2	2
75	Kinetics of Oxalic Acid Catalyzed and Ultrasound-Assisted Hydrolysis of 3-Glycidoxypropyltrimethoxysilane and Structural Characteristics of the Resulting Aged Sonogels. Journal of Physical Chemistry C, 2015, 119, 19162-19170.	3.1	2
76	A kinetic modeling for the ultrasound-assisted and oxalic acid-catalyzed hydrolysis of 3-glycidoxypropyltrimethoxysilane. Journal of Sol-Gel Science and Technology, 2016, 80, 873-880.	2.4	2
77	Sintering of dezincified α-brass. Physica Status Solidi A, 1981, 63, 321-328.	1.7	1
78	Scaling and branching in wet sonogels as a function of the volume fraction of the liquid phase. Journal of Physics Condensed Matter, 2009, 21, 205104.	1.8	1