
## Wolfgang Baumeister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1511530/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | STRUCTURAL STUDIES BY ELECTRON TOMOGRAPHY: From Cells to Molecules. Annual Review of Biochemistry, 2005, 74, 833-865.                                                                                     | 5.0  | 614       |
| 2  | Phase separation of a yeast prion protein promotes cellular fitness. Science, 2018, 359, .                                                                                                                | 6.0  | 534       |
| 3  | Three-Dimensional Structure of Herpes Simplex Virus from Cryo-Electron Tomography. Science, 2003, 302, 1396-1398.                                                                                         | 6.0  | 507       |
| 4  | Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science, 2016, 351, 969-972.                                                                                                      | 6.0  | 493       |
| 5  | From words to literature in structural proteomics. Nature, 2003, 422, 216-225.                                                                                                                            | 13.7 | 473       |
| 6  | Nuclear Pore Complex Structure and Dynamics Revealed by Cryoelectron Tomography. Science, 2004, 306, 1387-1390.                                                                                           | 6.0  | 451       |
| 7  | Volta potential phase plate for in-focus phase contrast transmission electron microscopy.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15635-15640.     | 3.3  | 448       |
| 8  | TOM software toolbox: acquisition and analysis for electron tomography. Journal of Structural Biology, 2005, 149, 227-234.                                                                                | 1.3  | 424       |
| 9  | Phase-plate cryo-EM structure of a class B GPCR–G-protein complex. Nature, 2017, 546, 118-123.                                                                                                            | 13.7 | 424       |
| 10 | Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1380-1387. | 3.3  | 422       |
| 11 | Perspectives of Molecular and Cellular Electron Tomography. Journal of Structural Biology, 1997, 120, 276-308.                                                                                            | 1.3  | 393       |
| 12 | Correlative microscopy: Bridging the gap between fluorescence light microscopy and cryo-electron tomography. Journal of Structural Biology, 2007, 160, 135-145.                                           | 1.3  | 356       |
| 13 | Focused ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proceedings of the United States of America, 2012, 109, 4449-4454.                                                       | 3.3  | 356       |
| 14 | Cryo-electron tomography: The challenge of doing structural biology in situ. Journal of Cell Biology, 2013, 202, 407-419.                                                                                 | 2.3  | 337       |
| 15 | In Situ Structure of Neuronal C9orf72 Poly-GA Aggregates Reveals Proteasome Recruitment. Cell, 2018, 172, 696-705.e12.                                                                                    | 13.5 | 311       |
| 16 | Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography.<br>Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4729-4734.      | 3.3  | 299       |
| 17 | A molecular census of 26 <i>S</i> proteasomes in intact neurons. Science, 2015, 347, 439-442.                                                                                                             | 6.0  | 287       |
| 18 | Structure of the adenosine-bound human adenosine A1 receptor–Gi complex. Nature, 2018, 558, 559-563.                                                                                                      | 13.7 | 274       |

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | In Situ Architecture and Cellular Interactions of PolyQ Inclusions. Cell, 2017, 171, 179-187.e10.                                                                                                 | 13.5 | 271       |
| 20 | Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor–Gs complex. Nature, 2018, 555, 121-125.                                                                              | 13.7 | 263       |
| 21 | Cryo-Electron Tomography: Can it Reveal the Molecular Sociology of Cells in Atomic Detail?. Trends<br>in Cell Biology, 2016, 26, 825-837.                                                         | 3.6  | 261       |
| 22 | Identification of macromolecular complexes in cryoelectron tomograms of phantom cells.<br>Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14153-14158. | 3.3  | 246       |
| 23 | Micromachining tools and correlative approaches for cellular cryo-electron tomography. Journal of<br>Structural Biology, 2010, 172, 169-179.                                                      | 1.3  | 230       |
| 24 | Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography.<br>ELife, 2015, 4, .                                                                           | 2.8  | 224       |
| 25 | Electron tomography: towards visualizing the molecular organization of the cytoplasm. Current<br>Opinion in Structural Biology, 2002, 12, 679-684.                                                | 2.6  | 217       |
| 26 | Optimized cryo-focused ion beam sample preparation aimed at in situ structural studies of membrane<br>proteins. Journal of Structural Biology, 2017, 197, 73-82.                                  | 1.3  | 216       |
| 27 | A visual approach to proteomics. Nature Reviews Molecular Cell Biology, 2006, 7, 225-230.                                                                                                         | 16.1 | 212       |
| 28 | Cryo-EM structure of haemoglobin at 3.2 Ã determined with the Volta phase plate. Nature Communications, 2017, 8, 16099.                                                                           | 5.8  | 211       |
| 29 | Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor. Nature, 2018, 561, 492-497.                                                                                           | 13.7 | 210       |
| 30 | Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature, 2020, 578, 296-300.                                                                                              | 13.7 | 204       |
| 31 | Three-dimensional architecture of murine rod outer segments determined by cryoelectron tomography. Journal of Cell Biology, 2007, 177, 917-925.                                                   | 2.3  | 192       |
| 32 | Automated segmentation of electron tomograms for a quantitative description of actin filament networks. Journal of Structural Biology, 2012, 177, 135-144.                                        | 1.3  | 186       |
| 33 | Cryo-electron Tomography of Neurospora Mitochondria. Journal of Structural Biology, 2000, 129,<br>48-56.                                                                                          | 1.3  | 179       |
| 34 | Opening windows into the cell: focused-ion-beam milling for cryo-electron tomography. Current<br>Opinion in Structural Biology, 2013, 23, 771-777.                                                | 2.6  | 179       |
| 35 | Structure of the human 26S proteasome at a resolution of 3.9 Ã Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7816-7821.                             | 3.3  | 174       |
| 36 | Structure of transcribing mammalian RNA polymerase II. Nature, 2016, 529, 551-554.                                                                                                                | 13.7 | 174       |

| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Site-Specific Cryo-focused Ion Beam Sample Preparation Guided by 3D Correlative Microscopy.<br>Biophysical Journal, 2016, 110, 860-869.                                                             | 0.2  | 172       |
| 38 | Regulated assembly of a supramolecular centrosome scaffold in vitro. Science, 2015, 348, 808-812.                                                                                                   | 6.0  | 170       |
| 39 | The promise and the challenges of cryoâ€electron tomography. FEBS Letters, 2020, 594, 3243-3261.                                                                                                    | 1.3  | 170       |
| 40 | A cryo-FIB lift-out technique enables molecular-resolution cryo-ET within native Caenorhabditis elegans tissue. Nature Methods, 2019, 16, 757-762.                                                  | 9.0  | 165       |
| 41 | In Situ Cryo-Electron Tomography: A Post-Reductionist Approach to Structural Biology. Journal of<br>Molecular Biology, 2016, 428, 332-343.                                                          | 2.0  | 160       |
| 42 | The structure of the COPI coat determined within the cell. ELife, 2017, 6, .                                                                                                                        | 2.8  | 152       |
| 43 | Organization of Actin Networks in Intact Filopodia. Current Biology, 2007, 17, 79-84.                                                                                                               | 1.8  | 151       |
| 44 | Structural insights into the functional cycle of the ATPase module of the 26S proteasome.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1305-1310. | 3.3  | 151       |
| 45 | Cryo-EM single particle analysis with the Volta phase plate. ELife, 2016, 5, .                                                                                                                      | 2.8  | 141       |
| 46 | Electron cryotomography of vitrified cells with a Volta phase plate. Journal of Structural Biology, 2015, 190, 143-154.                                                                             | 1.3  | 140       |
| 47 | The Regulatory Complex of Drosophila melanogaster 26s Proteasomes. Journal of Cell Biology, 2000,<br>150, 119-130.                                                                                  | 2.3  | 138       |
| 48 | Dissecting the molecular organization of the translocon-associated protein complex. Nature Communications, 2017, 8, 14516.                                                                          | 5.8  | 131       |
| 49 | A focused ion beam milling and lift-out approach for site-specific preparation of frozen-hydrated<br>lamellas from multicellular organisms. Journal of Structural Biology, 2015, 192, 262-269.      | 1.3  | 125       |
| 50 | The cryo-electron microscopy structure of huntingtin. Nature, 2018, 555, 117-120.                                                                                                                   | 13.7 | 125       |
| 51 | Proteasomes tether to two distinct sites at the nuclear pore complex. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13726-13731.                      | 3.3  | 123       |
| 52 | An integrated workflow for crosslinking mass spectrometry. Molecular Systems Biology, 2019, 15, e8994.                                                                                              | 3.2  | 120       |
| 53 | Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome. Nature Communications, 2014, 5, 3396.                                               | 5.8  | 111       |
| 54 | Using the Volta phase plate with defocus for cryo-EM single particle analysis. ELife, 2017, 6, .                                                                                                    | 2.8  | 109       |

WOLFGANG BAUMEISTER

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Electron Microscopy of Biological Materials at the Nanometer Scale. Annual Review of Materials<br>Research, 2012, 42, 33-58.                                                                      | 4.3  | 108       |
| 56 | Expanded Coverage of the 26S Proteasome Conformational Landscape Reveals Mechanisms of Peptidase<br>Gating. Cell Reports, 2018, 24, 1301-1315.e5.                                                 | 2.9  | 108       |
| 57 | In situ architecture of the algal nuclear pore complex. Nature Communications, 2018, 9, 2361.                                                                                                     | 5.8  | 107       |
| 58 | Cryo-focused Ion Beam Sample Preparation for Imaging Vitreous Cells by Cryo-electron Tomography.<br>Bio-protocol, 2015, 5, .                                                                      | 0.2  | 105       |
| 59 | Structural characterization of the interaction of Ubp6 with the 26S proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8626-8631.            | 3.3  | 98        |
| 60 | In situ structural analysis of Golgi intracisternal protein arrays. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11264-11269.                      | 3.3  | 94        |
| 61 | Molecular Details Underlying Dynamic Structures and Regulation of the Human 26S Proteasome.<br>Molecular and Cellular Proteomics, 2017, 16, 840-854.                                              | 2.5  | 93        |
| 62 | Expanding the boundaries of cryo-EM with phase plates. Current Opinion in Structural Biology, 2017, 46, 87-94.                                                                                    | 2.6  | 87        |
| 63 | Tricalbin-Mediated Contact Sites Control ER Curvature to Maintain Plasma Membrane Integrity.<br>Developmental Cell, 2019, 51, 476-487.e7.                                                         | 3.1  | 87        |
| 64 | Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nature<br>Methods, 2021, 18, 1386-1394.                                                               | 9.0  | 84        |
| 65 | A Selective Autophagy Pathway for Phase-Separated Endocytic Protein Deposits. Molecular Cell, 2020,<br>80, 764-778.e7.                                                                            | 4.5  | 82        |
| 66 | Charting the native architecture of Chlamydomonas thylakoid membranes with single-molecule precision. ELife, 2020, 9, .                                                                           | 2.8  | 80        |
| 67 | From proteomic inventory to architecture. FEBS Letters, 2005, 579, 933-937.                                                                                                                       | 1.3  | 77        |
| 68 | Structural basis for VIPP1 oligomerization and maintenance of thylakoid membrane integrity. Cell, 2021, 184, 3643-3659.e23.                                                                       | 13.5 | 76        |
| 69 | Molecular and structural architecture of polyQ aggregates in yeast. Proceedings of the National<br>Academy of Sciences of the United States of America, 2018, 115, E3446-E3453.                   | 3.3  | 68        |
| 70 | Direct visualization of degradation microcompartments at the ER membrane. Proceedings of the<br>National Academy of Sciences of the United States of America, 2020, 117, 1069-1080.               | 3.3  | 68        |
| 71 | In situ architecture of neuronal α-Synuclein inclusions. Nature Communications, 2021, 12, 2110.                                                                                                   | 5.8  | 66        |
| 72 | Cryo-EM structures of the archaeal PAN-proteasome reveal an around-the-ring ATPase cycle.<br>Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 534-539. | 3.3  | 65        |

WOLFGANG BAUMEISTER

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Volta phase plate cryo-EM of the small protein complex Prx3. Nature Communications, 2016, 7, 10534.                                                                                                                                | 5.8 | 64        |
| 74 | Cryo-EM structure of the native rhodopsin dimer in nanodiscs. Journal of Biological Chemistry, 2019, 294, 14215-14230.                                                                                                             | 1.6 | 64        |
| 75 | Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16866-16871. | 3.3 | 64        |
| 76 | Template-free detection and classification of membrane-bound complexes in cryo-electron tomograms.<br>Nature Methods, 2020, 17, 209-216.                                                                                           | 9.0 | 60        |
| 77 | Maximum likelihood based classification of electron tomographic data. Journal of Structural<br>Biology, 2011, 173, 77-85.                                                                                                          | 1.3 | 56        |
| 78 | The Architecture of Traveling Actin Waves Revealed by Cryo-Electron Tomography. Structure, 2019, 27, 1211-1223.e5.                                                                                                                 | 1.6 | 53        |
| 79 | Morphologies of synaptic protein membrane fusion interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9110-9115.                                                                | 3.3 | 51        |
| 80 | Mass Spectrometry Reveals the Missing Links in the Assembly Pathway of the Bacterial 20 S<br>Proteasome. Journal of Biological Chemistry, 2007, 282, 18448-18457.                                                                  | 1.6 | 50        |
| 81 | Actin Organization in Cells Responding to a Perforated Surface, Revealed by Live Imaging and Cryo-Electron Tomography. Structure, 2016, 24, 1031-1043.                                                                             | 1.6 | 50        |
| 82 | Mapping molecular landscapes inside cells. Biological Chemistry, 2004, 385, 865-872.                                                                                                                                               | 1.2 | 49        |
| 83 | Towards Visual Proteomics at High Resolution. Journal of Molecular Biology, 2021, 433, 167187.                                                                                                                                     | 2.0 | 49        |
| 84 | In situ cryo-electron tomography reveals gradient organization of ribosome biogenesis in intact nucleoli. Nature Communications, 2021, 12, 5364.                                                                                   | 5.8 | 46        |
| 85 | Pleomorphic linkers as ubiquitous structural organizers of vesicles in axons. PLoS ONE, 2018, 13, e0197886.                                                                                                                        | 1.1 | 34        |
| 86 | Coordinate transformation based cryo-correlative methods for electron tomography and focused ion beam milling. Ultramicroscopy, 2014, 143, 15-23.                                                                                  | 0.8 | 33        |
| 87 | Molecular and cellular dynamics of the 26S proteasome. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140583.                                                                                                | 1.1 | 33        |
| 88 | Molecular-scale visualization of sarcomere contraction within native cardiomyocytes. Nature Communications, 2021, 12, 4086.                                                                                                        | 5.8 | 33        |
| 89 | Cryoelectron Tomography Reveals Nanoscale Organization of the Cytoskeleton and Its Relation to<br>Microtubule Curvature Inside Cells. Structure, 2020, 28, 991-1003.e4.                                                            | 1.6 | 32        |
|    |                                                                                                                                                                                                                                    |     |           |

90 Molecular Biology of Assemblies and Machines. , 0, , .

Wolfgang Baumeister

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A voyage to the inner space of cells. Protein Science, 2009, 14, 257-269.                                                                                                                                             | 3.1 | 31        |
| 92  | Proteasomes: unfoldase-assisted protein degradation machines. Biological Chemistry, 2019, 401, 183-199.                                                                                                               | 1.2 | 29        |
| 93  | STOPGAP: A Software Package for Subtomogram Averaging and Refinement. Microscopy and Microanalysis, 2020, 26, 2516-2516.                                                                                              | 0.2 | 29        |
| 94  | Gelâ€like inclusions of Câ€ŧerminal fragments of TDPâ€43 sequester stalled proteasomes in neurons. EMBO<br>Reports, 2022, 23, e53890.                                                                                 | 2.0 | 28        |
| 95  | Localization of Protein Complexes by Pattern Recognition. Methods in Cell Biology, 2007, 79, 615-638.                                                                                                                 | 0.5 | 27        |
| 96  | In situ structural studies of tripeptidyl peptidase II (TPPII) reveal spatial association with proteasomes.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4412-4417. | 3.3 | 27        |
| 97  | Hierarchical detection and analysis of macromolecular complexes in cryo-electron tomograms using<br>Pyto software. Journal of Structural Biology, 2016, 196, 503-514.                                                 | 1.3 | 26        |
| 98  | Determinants shaping the nanoscale architecture of the mouse rod outer segment. ELife, 2021, 10, .                                                                                                                    | 2.8 | 25        |
| 99  | Connectivity of centermost chromatophores in <i>Rhodobacter sphaeroides</i> bacteria. Molecular<br>Microbiology, 2018, 109, 812-825.                                                                                  | 1.2 | 24        |
| 100 | Investigating the Structure of Neurotoxic Protein Aggregates Inside Cells. Trends in Cell Biology, 2020, 30, 951-966.                                                                                                 | 3.6 | 24        |
| 101 | Threeâ€dimensional organization of the cytoskeleton: A cryoâ€electron tomography perspective. Protein<br>Science, 2020, 29, 1302-1320.                                                                                | 3.1 | 24        |
| 102 | Structure-Driven Developments of 26S Proteasome Inhibitors. Annual Review of Pharmacology and Toxicology, 2016, 56, 191-209.                                                                                          | 4.2 | 23        |
| 103 | Reliable estimation of membrane curvature for cryo-electron tomography. PLoS Computational Biology, 2020, 16, e1007962.                                                                                               | 1.5 | 23        |
| 104 | Trans-synaptic assemblies link synaptic vesicles and neuroreceptors. Science Advances, 2021, 7, .                                                                                                                     | 4.7 | 23        |
| 105 | Revisiting the Structure of Hemoglobin and Myoglobin with Cryo-Electron Microscopy. Journal of<br>Molecular Biology, 2017, 429, 2611-2618.                                                                            | 2.0 | 22        |
| 106 | Removing Contamination-Induced Reconstruction Artifacts from Cryo-electron Tomograms.<br>Biophysical Journal, 2016, 110, 850-859.                                                                                     | 0.2 | 21        |
| 107 | Challenges of Integrating Stochastic Dynamics and Cryo-Electron Tomograms in Whole-Cell<br>Simulations. Journal of Physical Chemistry B, 2017, 121, 3871-3881.                                                        | 1.2 | 14        |
| 108 | Elasticity of podosome actin networks produces nanonewton protrusive forces. Nature<br>Communications, 2022, 13, .                                                                                                    | 5.8 | 14        |

Wolfgang Baumeister

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Amyloid-like aggregating proteins cause lysosomal defects in neurons via gain-of-function toxicity.<br>Life Science Alliance, 2022, 5, e202101185.                                                            | 1.3 | 13        |
| 110 | The evolution of the huntingtin-associated protein 40 (HAP40) in conjunction with huntingtin. BMC<br>Evolutionary Biology, 2020, 20, 162.                                                                     | 3.2 | 11        |
| 111 | Pathological polyQ expansion does not alter the conformation of the Huntingtin-HAP40 complex.<br>Structure, 2021, 29, 804-809.e5.                                                                             | 1.6 | 8         |
| 112 | Statistical spatial analysis for cryo-electron tomography. Computer Methods and Programs in Biomedicine, 2022, 218, 106693.                                                                                   | 2.6 | 8         |
| 113 | Interphase epichromatin: last refuge for the 30-nm chromatin fiber?. Chromosoma, 2021, 130, 91-102.                                                                                                           | 1.0 | 7         |
| 114 | A transformation clustering algorithm and its application in polyribosomes structural profiling.<br>Nucleic Acids Research, 2022, 50, 9001-9011.                                                              | 6.5 | 7         |
| 115 | Automated Cryo-tomography and Single Particle Analysis with a New Type of Phase Plate. Microscopy and Microanalysis, 2014, 20, 206-207.                                                                       | 0.2 | 5         |
| 116 | Cryo-FIB Lamella Milling: A Comprehensive Technique to Prepare Samples of Both Plunge- and<br>High-pressure Frozen-hydrated Specimens for in situ Studies Microscopy and Microanalysis, 2018, 24,<br>820-821. | 0.2 | 5         |
| 117 | Lipoprotein-like particles in a prokaryote: quinone droplets of <i>Thermoplasma acidophilum</i> . FEMS<br>Microbiology Letters, 2016, 363, fnw169.                                                            | 0.7 | 4         |
| 118 | A feature-guided, focused 3D signal permutation method for subtomogram averaging. Journal of<br>Structural Biology, 2022, 214, 107851.                                                                        | 1.3 | 4         |
| 119 | In Situ Tomography of Membrane Proteins Enabled by Advanced Cryo-FIB Sample Preparation and Phase<br>Plate Imaging. Microscopy and Microanalysis, 2015, 21, 1119-1120.                                        | 0.2 | 2         |
| 120 | Cryo-FIB Lift-out Sample Preparation Using a Novel Cryo-gripper Tool. Microscopy and Microanalysis, 2017, 23, 844-845.                                                                                        | 0.2 | 2         |
| 121 | Exploring the Inner Space of Cells by Cryoelectron-Tomography. Microscopy and Microanalysis, 2004, 10, 152-153.                                                                                               | 0.2 | 1         |
| 122 | Phase Contrast Cryo-Electron Tomography and Single Particle Analysis with a New Phase Plate.<br>Microscopy and Microanalysis, 2014, 20, 232-233.                                                              | 0.2 | 1         |
| 123 | Practical Aspects and Usage Tips for the Volta Phase Plate. Microscopy and Microanalysis, 2015, 21, 1391-1392.                                                                                                | 0.2 | 1         |
| 124 | In situ studies of cellular architecture by Electron Cryo-Tomography with Volta Phase Plate.<br>Microscopy and Microanalysis, 2015, 21, 1835-1836.                                                            | 0.2 | 1         |
| 125 | Single Particle Analysis with the Volta Phase Plate. Microscopy and Microanalysis, 2016, 22, 82-83.                                                                                                           | 0.2 | 1         |
| 126 | Single Particle Imaging with the Volta Phase Plate. Microscopy and Microanalysis, 2019, 25, 7-8.                                                                                                              | 0.2 | 1         |

| #   | Article                                                                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Autophagy ENDing unproductive phase-separated endocytic protein deposits. Autophagy, 2021, 17, 3264-3265.                                                                     | 4.3 | 1         |
| 128 | 1S-B2-2In Situ Structural Studies of Macro Molecular Complexes in Cells by Cryo-electron<br>Tomography with Volta Phase Plate. Microscopy (Oxford, England), 2017, 66, i9-i9. | 0.7 | 1         |
| 129 | 1S-B2-1Single Particle Analysis Applications of the Volta Phase Plate. Microscopy (Oxford, England), 2017, 66, i9-i9.                                                         | 0.7 | 1         |
| 130 | Structural Cell Biology: Preparing Specimens for Cryo-Electron Tomography Using Focused-Ion-Beam<br>Milling. Microscopy and Microanalysis, 2014, 20, 1222-1223.               | 0.2 | 0         |
| 131 | Phase-Contrast Cryo-Electron Tomography of Primary Cultured Neuronal Cells. Microscopy and Microanalysis, 2014, 20, 208-209.                                                  | 0.2 | 0         |
| 132 | Cryo-FIB Sample Preparation for Cryo-ET With the Volta Phase Plate. Microscopy and Microanalysis, 2016, 22, 72-73.                                                            | 0.2 | 0         |
| 133 | Charting Molecular Landscapes Using Cryo-Electron Tomography. Microscopy Today, 2017, 25, 26-31.                                                                              | 0.2 | 0         |
| 134 | The persuasive power of Ernesto Carafoli. Biochemical and Biophysical Research Communications, 2019, 520, 657-658.                                                            | 1.0 | 0         |
| 135 | Structural Genomics and Structural Proteomics: A Global Perspective. , 2008, , 505-537.                                                                                       |     | 0         |
| 136 | A12â€The cryo-electron microscopy structure of huntingtin. , 2018, , .                                                                                                        |     | 0         |
| 137 | Expanded Coverage of the 26S Proteasome Conformational Landscape Reveals Mechanisms of Peptidase<br>Gating. FASEB Journal, 2019, 33, .                                        | 0.2 | О         |