List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1511102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal Oxide Hollow Nanostructures for Lithiumâ€ion Batteries. Advanced Materials, 2012, 24, 1903-1911.	11.1	1,414
2	Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nature Communications, 2014, 5, 5002.	5.8	892
3	Assembling carbon-coated α-Fe ₂ O ₃ hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy and Environmental Science, 2012, 5, 5252-5256.	15.6	767
4	Quasiemulsion-Templated Formation of α-Fe ₂ O ₃ Hollow Spheres with Enhanced Lithium Storage Properties. Journal of the American Chemical Society, 2011, 133, 17146-17148.	6.6	750
5	Metal–Organicâ€Frameworkâ€Đerived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution. Advanced Materials, 2017, 29, 1700874.	11.1	678
6	Sustainable Synthesis and Assembly of Biomassâ€Derived B/N Coâ€Doped Carbon Nanosheets with Ultrahigh Aspect Ratio for Highâ€Performance Supercapacitors. Advanced Functional Materials, 2016, 26, 111-119.	7.8	607
7	Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybrids with Efficient Lithium Storage and Hydrogen Evolution Capability. Advanced Materials, 2017, 29, 1607017.	11.1	583
8	Fast Formation of SnO ₂ Nanoboxes with Enhanced Lithium Storage Capability. Journal of the American Chemical Society, 2011, 133, 4738-4741.	6.6	521
9	Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co ₉ S ₈ double-shelled nanocages for efficient oxygen reduction. Energy and Environmental Science, 2016, 9, 107-111.	15.6	499
10	Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy, 2018, 44, 181-190.	8.2	458
11	Aggregation-Resistant 3D MXene-Based Architecture as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Nano, 2018, 12, 8017-8028.	7.3	425
12	Metal–organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe ³⁺ . Journal of Materials Chemistry A, 2016, 4, 10900-10905.	5.2	412
13	Formation of SnO ₂ Hollow Nanospheres inside Mesoporous Silica Nanoreactors. Journal of the American Chemical Society, 2011, 133, 21-23.	6.6	391
14	Amorphous CoSnO ₃ @C nanoboxes with superior lithium storage capability. Energy and Environmental Science, 2013, 6, 87-91.	15.6	337
15	Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. RSC Advances, 2011, 1, 397.	1.7	322
16	Superhierarchical Cobaltâ€Embedded Nitrogenâ€Doped Porous Carbon Nanosheets as Twoâ€inâ€One Hosts for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1706895.	11.1	300
17	Green Synthesis of NiO Nanobelts with Exceptional Pseudoâ€Capacitive Properties. Advanced Energy Materials, 2012, 2, 1188-1192.	10.2	297
18	A Flexible TiO ₂ (B)â€Based Battery Electrode with Superior Power Rate and Ultralong Cycle Life. Advanced Materials, 2013, 25, 3462-3467.	11.1	286

#	Article	IF	CITATIONS
19	Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance. Journal of Materials Chemistry, 2011, 21, 6602.	6.7	280
20	A hierarchically porous and hydrophilic 3D nickel–iron/MXene electrode for accelerating oxygen and hydrogen evolution at high current densities. Nano Energy, 2019, 63, 103880.	8.2	275
21	Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nature Chemical Biology, 2017, 13, 415-424.	3.9	274
22	α-Fe2O3 nanotubes with superior lithium storage capability. Chemical Communications, 2011, 47, 8061.	2.2	265
23	Dye Encapsulated Metalâ€Organic Framework for Warmâ€White LED with High Colorâ€Rendering Index. Advanced Functional Materials, 2015, 25, 4796-4802.	7.8	260
24	TiO ₂ Nanocages: Fast Synthesis, Interior Functionalization and Improved Lithium Storage Properties. Advanced Materials, 2012, 24, 4124-4129.	11.1	250
25	Ultralong α-MoO ₃ Nanobelts: Synthesis and Effect of Binder Choice on Their Lithium Storage Properties. Journal of Physical Chemistry C, 2012, 116, 12508-12513.	1.5	246
26	Engineering Nonspherical Hollow Structures with Complex Interiors by Template-Engaged Redox Etching. Journal of the American Chemical Society, 2010, 132, 16271-16277.	6.6	241
27	Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation. Nature Communications, 2021, 12, 4182.	5.8	233
28	Graphene-wrapped TiO2 hollow structures with enhanced lithium storage capabilities. Nanoscale, 2011, 3, 2158.	2.8	223
29	Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors. Electrochimica Acta, 2016, 190, 1134-1141.	2.6	217
30	A Topâ€Đown Strategy toward 3D Carbon Nanosheet Frameworks Decorated with Hollow Nanostructures for Superior Lithium Storage. Advanced Functional Materials, 2016, 26, 7590-7598.	7.8	201
31	Engineering Multifunctional Collaborative Catalytic Interface Enabling Efficient Hydrogen Evolution in All pH Range and Seawater. Advanced Energy Materials, 2019, 9, 1901333.	10.2	196
32	One-pot synthesis of uniform carbon-coated MoO2 nanospheres for high-rate reversible lithium storage. Chemical Communications, 2010, 46, 6906.	2.2	185
33	Synthesis of MoS ₂ –C One-Dimensional Nanostructures with Improved Lithium Storage Properties. ACS Applied Materials & Interfaces, 2012, 4, 3765-3768.	4.0	183
34	TiO ₂ hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage. Journal of Materials Chemistry, 2011, 21, 1677-1680.	6.7	182
35	Mixed-Metal–Organic Framework with Effective Lewis Acidic Sites for Sulfur Confinement in High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2015, 7, 20999-21004.	4.0	182
36	CuO nanostructures supported on Cu substrate as integrated electrodes for highly reversible lithium storage. Nanoscale, 2011, 3, 1618.	2.8	174

#	Article	IF	CITATIONS
37	Interconnected MoO ₂ Nanocrystals with Carbon Nanocoating as High-Capacity Anode Materials for Lithium-ion Batteries. ACS Applied Materials & Interfaces, 2011, 3, 4853-4857.	4.0	167
38	MXene-Based Electrode with Enhanced Pseudocapacitance and Volumetric Capacity for Power-Type and Ultra-Long Life Lithium Storage. ACS Nano, 2018, 12, 3928-3937.	7.3	163
39	Porous anatase TiO ₂ constructed from a metal–organic framework for advanced lithium-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 12571.	5.2	153
40	Freestanding Flexible Li ₂ S Paper Electrode with High Mass and Capacity Loading for Highâ€Energy Li–S Batteries. Advanced Energy Materials, 2017, 7, 1700018.	10.2	152
41	Multilevel Hollow MXene Tailored Lowâ€Pt Catalyst for Efficient Hydrogen Evolution in Fullâ€pH Range and Seawater. Advanced Functional Materials, 2020, 30, 1910028.	7.8	150
42	Black Hydroxylated Titanium Dioxide Prepared via Ultrasonication with Enhanced Photocatalytic Activity. Scientific Reports, 2015, 5, 11712.	1.6	133
43	Mesoporous Single-crystal CoSn(OH)6 Hollow Structures with Multilevel Interiors. Scientific Reports, 2013, 3, 1391.	1.6	131
44	TiO ₂ nanotube arrays grafted with Fe ₂ O ₃ hollow nanorods as integrated electrodes for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 122-127.	5.2	130
45	Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors. Nanoscale, 2013, 5, 2999.	2.8	128
46	Nitrogen-Doped Graphene on Transition Metal Substrates as Efficient Bifunctional Catalysts for Oxygen Reduction and Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2017, 9, 22578-22587.	4.0	128
47	A Terbium Metal–Organic Framework for Highly Selective and Sensitive Luminescence Sensing of Hg ²⁺ lons in Aqueous Solution. Chemistry - A European Journal, 2016, 22, 18429-18434.	1.7	121
48	A Polymetallic Metalâ€Organic Frameworkâ€Derived Strategy toward Synergistically Multidoped Metal Oxide Electrodes with Ultralong Cycle Life and High Volumetric Capacity. Advanced Functional Materials, 2017, 27, 1605332.	7.8	116
49	Sulfur-infiltrated graphene-backboned mesoporous carbon nanosheets with a conductive polymer coating for long-life lithium–sulfur batteries. Nanoscale, 2015, 7, 7569-7573.	2.8	106
50	Dually Fixed SnO ₂ Nanoparticles on Graphene Nanosheets by Polyaniline Coating for Superior Lithium Storage. ACS Applied Materials & Interfaces, 2015, 7, 2444-2451.	4.0	99
51	Low temperature plasma synthesis of mesoporous Fe3O4 nanorods grafted on reduced graphene oxide for high performance lithium storage. Nanoscale, 2014, 6, 2286.	2.8	97
52	Energy‣aving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation. Advanced Materials, 2022, 34, e2109321.	11.1	95
53	Highly dispersed β-NiS nanoparticles in porous carbon matrices by a template metal–organic framework method for lithium-ion cathode. Journal of Materials Chemistry A, 2014, 2, 7912.	5.2	89
54	Rational design of high-performance sodium-ion battery anode by molecular engineering of coal tar pitch. Chemical Engineering Journal, 2018, 342, 52-60.	6.6	87

#	Article	IF	CITATIONS
55	Synthesis of polypeptides via bioinspired polymerization of in situ purified <i>N</i> -carboxyanhydrides. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10658-10663.	3.3	87
56	Accelerating polysulfide redox conversion on bifunctional electrocatalytic electrode for stable Li-S batteries. Energy Storage Materials, 2019, 20, 98-107.	9.5	87
57	Fabrication and characterization of magnetic Fe3O4–CNT composites. Journal of Physics and Chemistry of Solids, 2010, 71, 673-676.	1.9	82
58	CVD synthesis of coal-gas-derived carbon nanotubes and nanocapsules containing magnetic iron carbide and oxide. Carbon, 2006, 44, 2565-2568.	5.4	80
59	Ultrastable and high-capacity carbon nanofiber anodes derived from pitch/polyacrylonitrile for flexible sodium-ion batteries. Carbon, 2018, 135, 187-194.	5.4	80
60	Boosting redox activity on MXene-induced multifunctional collaborative interface in high Li2S loading cathode for high-energy Li-S and metallic Li-free rechargeable batteries. Journal of Energy Chemistry, 2019, 37, 183-191.	7.1	80
61	Free-standing, hierarchically porous carbon nanotube film as a binder-free electrode for high-energy Li–O2 batteries. Journal of Materials Chemistry A, 2013, 1, 12033.	5.2	78
62	Boosting the Electrocatalysis of MXenes by Plasmonâ€Induced Thermalization and Hotâ€Electron Injection. Angewandte Chemie - International Edition, 2021, 60, 9416-9420.	7.2	78
63	Nitrogen-rich carbon coupled multifunctional metal oxide/graphene nanohybrids for long-life lithium storage and efficient oxygen reduction. Nano Energy, 2015, 12, 578-587.	8.2	76
64	Nitrogen-doped graphene nanoribbons for high-performance lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 16832-16835.	5.2	75
65	In situ synthesis of super-long Cu nanowires inside carbon nanotubes with coal as carbon source. Carbon, 2006, 44, 1845-1847.	5.4	74
66	A Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Energy-Harvesting Soft Actuator with Self-Powered Humidity Sensing and Real-Time Motion Tracking Capability. ACS Nano, 2021, 15, 16811-16818.	7.3	74
67	Single-atom Pt promoted Mo2C for electrochemical hydrogen evolution reaction. Journal of Energy Chemistry, 2021, 57, 371-377.	7.1	69
68	Formation of Pt–TiO ₂ –rGO 3-phase junctions with significantly enhanced electro-activity for methanol oxidation. Physical Chemistry Chemical Physics, 2012, 14, 473-476.	1.3	67
69	One-Step Synthesis of SnO2and TiO2Hollow Nanostructures with Various Shapes and Their Enhanced Lithium Storage Properties. Chemistry - A European Journal, 2012, 18, 7561-7567.	1.7	67
70	Low Cytotoxic Metal–Organic Frameworks as Temperatureâ€Responsive Drug Carriers. ChemPlusChem, 2016, 81, 804-810.	1.3	67
71	SBA-15 derived carbon-supported SnO2 nanowire arrays with improved lithium storage capabilities. Journal of Materials Chemistry, 2011, 21, 13860.	6.7	61
72	Shape Evolution of Highly Crystalline Anatase TiO ₂ Nanobipyramids. Crystal Growth and Design, 2011, 11, 5221-5226.	1.4	61

#	Article	IF	CITATIONS
73	Stabilizing MXene by Hydration Chemistry in Aqueous Solution. Angewandte Chemie - International Edition, 2021, 60, 26587-26591.	7.2	61
74	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	1.8	57
75	Synthesis of double-walled carbon nanotubes from coal in hydrogen-free atmosphere. Fuel, 2007, 86, 282-286.	3.4	55
76	A Li ₂ S-based all-solid-state battery with high energy and superior safety. Science Advances, 2022, 8, eabl8390.	4.7	54
77	Shape-Control and Characterization of Magnetite Prepared via a One-Step Solvothermal Route. Crystal Growth and Design, 2010, 10, 2863-2869.	1.4	53
78	An amino-decorated NbO-type metal–organic framework for high C ₂ H ₂ storage and selective CO ₂ capture. RSC Advances, 2015, 5, 77417-77422.	1.7	53
79	Synthesis of branched carbon nanotubes from coal. Carbon, 2006, 44, 1321-1324.	5.4	52
80	Liquid–Liquid Diffusionâ€Assisted Crystallization: A Fast and Versatile Approach Toward High Quality Mixed Quantum Dot‧alt Crystals. Advanced Functional Materials, 2015, 25, 2638-2645.	7.8	52
81	General synthesis of MXene by green etching chemistry of fluoride-free Lewis acidic melts. Rare Metals, 2020, 39, 1237-1238.	3.6	52
82	A Molecular age Strategy Enabling Efficient Chemisorption–Electrocatalytic Interface in Nanostructured Li ₂ S Cathode for Li Metalâ€Free Rechargeable Cells with High Energy. Advanced Functional Materials, 2019, 29, 1905986.	7.8	51
83	Temperature-dependent luminescent properties of Eu–Tb complexes synthesized in situ in gel glass. Applied Physics Letters, 2005, 86, 071907.	1.5	48
84	A general strategy for synthesis of silver dendrites by galvanic displacement under hydrothermal conditions. Journal of Physics and Chemistry of Solids, 2008, 69, 1296-1300.	1.9	48
85	Towards efficient electrocatalysts for oxygen reduction by doping cobalt into graphene-supported graphitic carbon nitride. Journal of Materials Chemistry A, 2015, 3, 19657-19661.	5.2	47
86	α-Fe ₂ O ₃ -mediated growth and carbon nanocoating of ultrafine SnO ₂ nanorods as anode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 2526-2531.	6.7	46
87	Achieving ultralong life sodium storage in amorphous cobalt–tin binary sulfide nanoboxes sheathed in N-doped carbon. Journal of Materials Chemistry A, 2017, 5, 10398-10405.	5.2	45
88	Hydrogenâ€Bonding Crosslinking MXene to Highly Robust and Ultralight Aerogels for Strengthening Lithium Metal Anode. Small Science, 2021, 1, 2100021.	5.8	41
89	A quasi-solid-state rechargeable cell with high energy and superior safety enabled by stable redox chemistry of Li ₂ S in gel electrolyte. Energy and Environmental Science, 2021, 14, 2278-2290.	15.6	40
90	Enhancement of nonlinear optical activity in new six-branched dendritic dipolar chromophore. Journal of Materials Chemistry, 2011, 21, 3197.	6.7	38

#	Article	IF	CITATIONS
91	A fluorescent pH chemosensor for strongly acidic conditions based on the intramolecular charge transfer (ICT) effect. RSC Advances, 2013, 3, 4872.	1.7	35
92	Compressible graphene aerogel supported CoO nanostructures as a binder-free electrode for high-performance lithium-ion batteries. RSC Advances, 2015, 5, 8929-8932.	1.7	32
93	Ultrafine Fe ₃ O ₄ Quantum Dots on Hybrid Carbon Nanosheets for Longâ€Life, Highâ€Rate Alkaliâ€Metal Storage. ChemElectroChem, 2016, 3, 38-44.	1.7	32
94	General synthesis of zeolitic imidazolate framework-derived planar-N-doped porous carbon nanosheets for efficient oxygen reduction. Energy Storage Materials, 2017, 7, 181-188.	9.5	31
95	Facile synthesis of graphene-supported mesoporous Mn3O4 nanosheets with a high-performance in Li-ion batteries. RSC Advances, 2014, 4, 5367.	1.7	30
96	Rational design of metal oxide hollow nanostructures decorated carbon nanosheets for superior lithium storage. Journal of Materials Chemistry A, 2016, 4, 17718-17725.	5.2	30
97	Carbon Nanotube Templated Synthesis of CeF3 Nanowires. Chemistry of Materials, 2007, 19, 3364-3366.	3.2	29
98	A Highâ€Energy and Safe Lithium Battery Enabled by Solidâ€ S tate Redox Chemistry in a Fireproof Gel Electrolyte. Advanced Materials, 2022, 34, e2201981.	11.1	27
99	Characterizations of Al–Y thin film composite anode materials for lithium-ion batteries. Electrochemistry Communications, 2009, 11, 1179-1182.	2.3	26
100	Synthesis of different CuO nanostructures from Cu(OH) ₂ nanorods through changing drying medium for lithium-ion battery anodes. RSC Advances, 2015, 5, 28611-28618.	1.7	26
101	Long life rechargeable Li-O2 batteries enabled by enhanced charge transfer in nanocable-like Fe@N-doped carbon nanotube catalyst. Science China Materials, 2017, 60, 415-426.	3.5	26
102	Water-assisted fabrication of aligned microsized carbon tubes made of self-assembled multi-wall carbon nanotubes. Chemical Communications, 2006, , 594-596.	2.2	23
103	Hydrogen Production and Water Desalination with Onâ€demand Electricity Output Enabled by Electrochemical Neutralization Chemistry. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
104	Boosting hydrogen generation by anodic oxidation of iodide over Ni–Co(OH) ₂ nanosheet arrays. Nanoscale Advances, 2021, 3, 604-610.	2.2	22
105	NiCo (oxy)selenide electrocatalysts <i>via</i> anionic regulation for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 5410-5419.	5.2	22
106	Hybrid Nonlinear Optical Materials Containing Imidazole Chromophore through the Solâ€Gel Process. Macromolecular Rapid Communications, 2007, 28, 2019-2023.	2.0	21
107	A Noninterpenetrated Metal–Organic Framework Built from an Enlarged Tetracarboxylic Acid for Small Hydrocarbon Separation. Crystal Growth and Design, 2015, 15, 4071-4074.	1.4	21
108	Microporous MOFs Engaged in the Formation of Nitrogenâ€Doped Mesoporous Carbon Nanosheets for Highâ€Rate Supercapacitors. Chemistry - A European Journal, 2018, 24, 2681-2686.	1.7	21

#	Article	IF	CITATIONS
109	Enhanced photocatalytic activity of hydroxylated and N-doped anatase derived from amorphous hydrate. Journal of Materials Chemistry A, 2014, 2, 16242-16249.	5.2	19
110	Carbonate-assisted hydrothermal synthesis of porous, hierarchical CuO microspheres and CuO/GO for high-performance lithium-ion battery anodes. RSC Advances, 2015, 5, 85179-85186.	1.7	19
111	Electrochemical properties of SnO ₂ nanoparticles immobilized within a metal–organic framework as an anode material for lithium-ion batteries. RSC Advances, 2015, 5, 84662-84665.	1.7	19
112	Ultrasonic-induced disorder engineering on ZnO, ZrO ₂ , Fe ₂ O ₃ and SnO ₂ nanocrystals. RSC Advances, 2017, 7, 18785-18792.	1.7	18
113	Synthesis and luminescence behavior of inorganic–organic hybrid materials covalently bound with pyran-containing dyes. Journal of Sol-Gel Science and Technology, 2009, 52, 362-369.	1.1	16
114	One-dimension TiO2 nanostructures: oriented attachment and application in dye-sensitized solar cell. CrystEngComm, 2014, 16, 1681.	1.3	16
115	Recyclable catalyst for catalytic hydrogenation of phenylacetylene by coupling Pd nanoparticles with highly compressible graphene aerogels. RSC Advances, 2014, 4, 59977-59980.	1.7	16
116	Chemically converting graphene oxide to graphene with organic base for Suzuki reaction. Materials Research Bulletin, 2015, 67, 77-82.	2.7	16
117	Coordination-driven self-assembly: construction of a Fe ₃ O ₄ –graphene hybrid 3D framework and its long cycle lifetime for lithium-ion batteries. RSC Advances, 2015, 5, 40249-40257.	1.7	16
118	Carbon dioxide-assisted fabrication of self-organized tubular carbon micropatterns on silicon substrates. Carbon, 2010, 48, 1465-1472.	5.4	14
119	TiO2 mesoporous single crystals with controllable architectures and TiO2/graphene oxide nanocomposites for high-performance lithium ion battery anodes. Electrochimica Acta, 2016, 190, 25-32.	2.6	14
120	A new NbO type metal–organic framework for high acetylene and methane storage. RSC Advances, 2015, 5, 84446-84450.	1.7	13
121	Effect of pH values on photocatalytic properties of Bi2WO6 synthesized by hydrothermal method. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 533-536.	0.4	12
122	Bowl-like sulfur particles wrapped by graphene oxide as cathode material of lithium–sulfur batteries. RSC Advances, 2015, 5, 28832-28835.	1.7	12
123	Fabrication, magnetic properties and self-assembly of hierarchical crystalline hexapod magnetites. RSC Advances, 2012, 2, 4329.	1.7	10
124	Shape―and Size ontrolled Synthesis of Mn ₃ O ₄ Nanocrystals at Room Temperature. European Journal of Inorganic Chemistry, 2014, 2014, 3023-3029.	1.0	10
125	Low Cytotoxic Metal-Organic Frameworks as Temperature-Responsive Drug Carriers. ChemPlusChem, 2016, 81, 668-668.	1.3	10
126	Scalable Synthesis of NiFe‣DH/Ni ₉ S ₈ /NF Nanosheets by Twoâ€&tep Corrosion for Efficient Oxygen Electrocatalysis. ChemCatChem, 2022, 14, .	1.8	10

#	Article	IF	CITATIONS
127	TiO2/C composites nanorods synthesized by internal-reflux method for lithium-ion battery anode materials. Materials Letters, 2014, 117, 124-127.	1.3	9
128	Controllable synthesis of spherical anatase mesocrystals for lithium ion batteries. New Journal of Chemistry, 2014, 38, 4754-4759.	1.4	9
129	Self-assembled hierarchical mesoporous TiO2–C sub-microspheres from nanorods and their improved properties for lithium storage. RSC Advances, 2014, 4, 19266.	1.7	8
130	Hyper oxygen incorporation in CeF ₃ : a new intermediate-band photocatalyst for antibiotic degradation under visible/NIR light. RSC Advances, 2020, 10, 38798-38804.	1.7	8
131	Cu ²⁺ -Guided Construction of the Amorphous CoMoO ₃ /Cu Nanocomposite for Highly Efficient Water Electrolysis. ACS Applied Energy Materials, 2021, 4, 6740-6748.	2.5	8
132	In Situ Synthesis Kinetics of Salicylic Acid Terbium Complexes in Sol-Gel Derived Host Materials. Journal of Sol-Gel Science and Technology, 2004, 30, 95-99.	1.1	6
133	Two-Step Self-Assembly and Lyotropic Liquid Crystal Behavior of TiO _{2} Nanorods. Journal of Nanomaterials, 2012, 2012, 1-8.	1.5	6
134	Vertical-cavity surface-emitting laser in the long-wavelength (700Ânm) region in the visible by energy transfer between organic dyes. Applied Physics B: Lasers and Optics, 2014, 115, 583-588.	1.1	6
135	Ultrasonic-induced nanocomposites with anatase@amorphous TiO2 core–shell structure and their photocatalytic activity. RSC Advances, 2016, 6, 67444-67448.	1.7	6
136	Highâ€Efficiency Photocatalysis of Selfâ€Hydroxylated TiO ₂ Nanocrystals for Water Splitting. ChemistrySelect, 2019, 4, 13998-14003.	0.7	5
137	Nano Anatase TiO ₂ Quasi-Core–Shell Homophase Junction Induced by a Ti ³⁺ Concentration Difference for Highly Efficient Hydrogen Evolution. Inorganic Chemistry, 2020, 59, 3330-3339.	1.9	5
138	Stabilizing MXene by Hydration Chemistry in Aqueous Solution. Angewandte Chemie, 2021, 133, 26791-26795.	1.6	5
139	Boosting Hydrogen Evolution through the Interface Effects of Amorphous NiMoO ₄ –MoO ₂ and Crystalline Cu. ACS Omega, 2022, 7, 2244-2251.	1.6	5
140	Sonochemical synthesis of core/Shell structured CdS/TiO2 nanocrystals composites. Journal Wuhan University of Technology, Materials Science Edition, 2009, 24, 698-701.	0.4	4
141	Nanohybrids: Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybrids with Efficient Lithium Storage and Hydrogen Evolution Capability (Adv. Mater. 24/2017). Advanced Materials, 2017, 29, .	11.1	4
142	Boosting the Electrocatalysis of MXenes by Plasmonâ€Induced Thermalization and Hotâ€Electron Injection. Angewandte Chemie, 2021, 133, 9502-9506.	1.6	4
143	In-situ Synthesis of Copper Phthalocyanine in Silica Xerogel Matrix. Journal of Sol-Gel Science and Technology, 2000, 18, 21-27.	1.1	3
144	Controllable synthesis of TiO2hierarchical and their applications in lithium ion batteries. RSC Advances, 2014, 4, 42772-42778.	1.7	3

#	Article	IF	CITATIONS
145	Hollow TiO2 microspheres: template-free synthesis, remarkable structure stability, and improved photoelectric performance. New Journal of Chemistry, 2016, 40, 4751-4755.	1.4	3
146	Sacrificial Reagent Free Photocatalytic Oxygen Evolution over CeF ₃ /αâ€FeOOH Nanohybrid. Advanced Materials Interfaces, 2021, 8, 2101161.	1.9	3
147	Fast Peelâ€Off Ultrathin, Transparent, and Freeâ€5tanding Films Assembled from Lowâ€Dimensional Materials Using MXene Sacrificial Layers and Produced Bubbles. Small Methods, 2021, , 2101388.	4.6	3
148	O,N-Codoped CeF ₃ Upconversion Nanoparticles for Efficient Photocatalytic Oxygen Evolution under Visible Light. ACS Applied Nano Materials, 2022, 5, 5096-5102.	2.4	3
149	White Light: Dye Encapsulated Metalâ€Organic Framework for Warmâ€White LED with High Colorâ€Rendering Index (Adv. Funct. Mater. 30/2015). Advanced Functional Materials, 2015, 25, 4795-4795.	7.8	2
150	Potential bleach activators with improved imide hydrolytic stability. International Journal of Industrial Chemistry, 2020, 11, 177-185.	3.1	2
151	Title is missing!. Journal of Fluorescence, 2002, 12, 377-382.	1.3	1
152	Effect of pendant group on the second-order optical nonlinearity of sol–gel films. Journal of Sol-Gel Science and Technology, 2008, 47, 252-259.	1.1	1
153	Semiconductor Nanocrystals: Liquid–Liquid Diffusionâ€Assisted Crystallization: A Fast and Versatile Approach Toward High Quality Mixed Quantum Dotâ€Salt Crystals (Adv. Funct. Mater. 18/2015). Advanced Functional Materials, 2015, 25, 2783-2783.	7.8	1
154	Quasi-solid sodium ions electrolyte of \$\${hbox {Na}}_{2} hbox {O}{-} {hbox {B}}_{2} {hbox {O}}_{3}-{ hbox {SiO}}_{2} {-} {hbox {H}}_{2} hbox {O}\$\$ system hydrated glass. Bulletin of Materials Science, 2020, 43, 1.	0.8	1
155	Synthesis of novel SnO2 quantum cubes and their selfassembly. Journal Wuhan University of Technology. Materials Science Edition, 2011, 26, 269-272.	0.4	0