Lars Chittka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1510719/publications.pdf

Version: 2024-02-01

7561 10441 23,316 266 77 139 citations h-index g-index papers 371 371 371 12983 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genomic Signatures of Recent Adaptation in a Wild Bumblebee. Molecular Biology and Evolution, 2022, 39, .	3.5	9
2	Social cognition in insects. Trends in Cognitive Sciences, 2022, 26, 578-592.	4.0	17
3	Central Place Foraging. , 2022, , 1149-1153.		O
4	Discrimination of edge orientation by bumblebees. PLoS ONE, 2022, 17, e0263198.	1.1	2
5	Descending control of nociception in insects?. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	5
6	Different effects of reward value and saliency during bumblebee visual search for multiple rewarding targets. Animal Cognition, 2021, 24, 803-814.	0.9	6
7	Animal Cognition: The Self-Image of a Bumblebee. Current Biology, 2021, 31, R207-R209.	1.8	4
8	Harmonic radar tracking reveals that honeybee drones navigate between multiple aerial leks. IScience, 2021, 24, 102499.	1.9	19
9	Stigmergy versus behavioral flexibility and planning in honeybee comb construction. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2111310118.	3.3	6
10	Bumble bees strategically use ground level linear features in navigation. Animal Behaviour, 2021, 179, 147-160.	0.8	17
11	Gut microbiome drives individual memory variation in bumblebees. Nature Communications, 2021, 12, 6588.	5.8	34
12	Bumblebees Use Sequential Scanning of Countable Items in Visual Patterns to Solve Numerosity Tasks. Integrative and Comparative Biology, 2020, 60, 929-942.	0.9	27
13	Honey bees adjust colour preferences in response to concurrent social information from conspecifics and heterospecifics. Animal Behaviour, 2020, 170, 219-228.	0.8	8
14	Bumblebees Learn a Relational Rule but Switch to a Win-Stay/Lose-Switch Heuristic After Extensive Training. Frontiers in Behavioral Neuroscience, 2020, 14, 137.	1.0	7
15	Charles H. Turner, pioneer in animal cognition. Science, 2020, 370, 530-531.	6.0	7
16	The secret lives of bees as horticulturists?. Science, 2020, 368, 824-825.	6.0	0
17	Bumble bees display cross-modal object recognition between visual and tactile senses. Science, 2020, 367, 910-912.	6.0	50
18	What is cognition?. Current Biology, 2019, 29, R608-R615.	1.8	58

#	Article	IF	CITATIONS
19	Flower colour diversity seen through the eyes of pollinators. A commentary on: â€~Floral colour structure in two Australian herbaceous communities: it depends on who is looking'. Annals of Botany, 2019, 124, viii-ix.	1.4	2
20	Randomly weighted receptor inputs can explain the large diversity of colour-coding neurons in the bee visual system. Scientific Reports, 2019, 9, 8330.	1.6	7
21	Temporal correlation of elevated PRMT1 gene expression with mushroom body neurogenesis during bumblebee brain development. Journal of Insect Physiology, 2019, 116, 57-69.	0.9	2
22	Animal Behaviour: Conformity and the Beginnings ofÂCulture in an Insect. Current Biology, 2019, 29, R167-R169.	1.8	6
23	Caste―and pesticideâ€specific effects of neonicotinoid pesticide exposure on gene expression in bumblebees. Molecular Ecology, 2019, 28, 1964-1974.	2.0	55
24	Harmonic radar tracking reveals random dispersal pattern of bumblebee (Bombus terrestris) queens after hibernation. Scientific Reports, 2019, 9, 4651.	1.6	31
25	A spatial network analysis of resource partitioning between bumblebees foraging on artificial flowers in a flight cage. Movement Ecology, 2019, 7, 4.	1.3	16
26	Editorial: The Mechanisms of Insect Cognition. Frontiers in Psychology, 2019, 10, 2751.	1.1	14
27	Insect-Inspired Sequential Inspection Strategy Enables an Artificial Network of Four Neurons to Estimate Numerosity. IScience, 2019, 11, 85-92.	1.9	31
28	How foresight might support the behavioral flexibility of arthropods. Current Opinion in Neurobiology, 2019, 54, 171-177.	2.0	26
29	Expanding Consciousness. American Scientist, 2019, 107, 364.	0.1	11
30	Large-scale transcriptome changes in the process of long-term visual memory formation in the bumblebee, Bombus terrestris. Scientific Reports, 2018, 8, 534.	1.6	9
31	Bumblebee social learning can lead to suboptimal foraging choices. Animal Behaviour, 2018, 135, 209-214.	0.8	34
32	Color discrimination is not just limited by photoreceptor noise: a comment on Olsson et al Behavioral Ecology, 2018, 29, 285-286.	1.0	7
33	Counting insects. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20160513.	1.8	43
34	Adaptive learning in non-social insects: from theory to field work, and back. Current Opinion in Insect Science, 2018, 27, 75-81.	2.2	20
35	Underwater image and video dehazing with pure haze region segmentation. Computer Vision and Image Understanding, 2018, 168, 145-156.	3.0	74
36	High-Speed Videography Reveals How Honeybees Can Turn a Spatial Concept Learning Task Into a Simple Discrimination Task by Stereotyped Flight Movements and Sequential Inspection of Pattern Elements. Frontiers in Psychology, 2018, 9, 1347.	1.1	18

#	Article	IF	Citations
37	Cognitive Aspects of Comb-Building in the Honeybee?. Frontiers in Psychology, 2018, 9, 900.	1.1	25
38	The Importance of Spatial Visual Scene Parameters in Predicting Optimal Cone Sensitivities in Routinely Trichromatic Frugivorous Old-World Primates. Frontiers in Computational Neuroscience, 2018, 12, 15.	1,2	3
39	Bumblebees Express Consistent, but Flexible, Speed-Accuracy Tactics Under Different Levels of Predation Threat. Frontiers in Psychology, 2018, 9, 1601.	1.1	8
40	Bumblebees distinguish floral scent patterns, and can transfer these to corresponding visual patterns. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180661.	1.2	51
41	Central Place Foraging. , 2018, , 1-4.		0
42	Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science, 2017, 355, 833-836.	6.0	145
43	Sheep in wolf's clothing: multicomponent traits enhance the success of mimicry in spider-mimicking moths. Animal Behaviour, 2017, 127, 219-224.	0.8	12
44	Nicotine in floral nectar pharmacologically influences bumblebee learning of floral features. Scientific Reports, 2017, 7, 1951.	1.6	51
45	The frontiers of insect cognition. Current Opinion in Behavioral Sciences, 2017, 16, 111-118.	2.0	70
46	Multispectral images of flowers reveal the adaptive significance of using long-wavelength-sensitive receptors for edge detection in bees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 301-311.	0.7	13
47	A Simple Computational Model of the Bee Mushroom Body Can Explain Seemingly Complex Forms of Olfactory Learning and Memory. Current Biology, 2017, 27, 224-230.	1.8	74
48	A possible structural correlate of learning performance on a colour discrimination task in the brain of the bumblebee. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171323.	1.2	49
49	Bee cognition. Current Biology, 2017, 27, R1049-R1053.	1.8	63
50	Associative visual learning by tethered bees in a controlled visual environment. Scientific Reports, 2017, 7, 12903.	1.6	30
51	Analysing plant–pollinator interactions with spatial movement networks. Ecological Entomology, 2017, 42, 4-17.	1.1	21
52	Continuous Radar Tracking Illustrates the Development of Multi-destination Routes of Bumblebees. Scientific Reports, 2017, 7, 17323.	1.6	47
53	Insect Bio-inspired Neural Network Provides New Evidence on How Simple Feature Detectors Can Enable Complex Visual Generalization and Stimulus Location Invariance in the Miniature Brain of Honeybees. PLoS Computational Biology, 2017, 13, e1005333.	1.5	40
54	Olfactory learning without the mushroom bodies: Spiking neural network models of the honeybee lateral antennal lobe tract reveal its capacities in odour memory tasks of varied complexities. PLoS Computational Biology, 2017, 13, e1005551.	1. 5	22

#	Article	IF	CITATIONS
55	Sensor Capability and Atmospheric Correction in Ocean Colour Remote Sensing. Remote Sensing, 2016, 8, 1.	1.8	463
56	Editorial overview: Behavioural ecology â€" molecular and neural mechanisms underpinning adaptive behaviour in insects. Current Opinion in Insect Science, 2016, 15, vii-ix.	2.2	0
57	Facial patterns in a tropical social wasp correlate with colony membership. Die Naturwissenschaften, 2016, 103, 80.	0.6	17
58	Unexpected rewards induce dopamine-dependent positive emotion–like state changes in bumblebees. Science, 2016, 353, 1529-1531.	6.0	109
59	Flower Iridescence Increases Object Detection in the Insect Visual System without Compromising Object Identity. Current Biology, 2016, 26, 802-808.	1.8	43
60	Evolving understanding of nervous system evolution. Current Biology, 2016, 26, R937-R941.	1.8	20
61	Copy-when-uncertain: bumblebees rely on social information when rewards are highly variable. Biology Letters, 2016, 12, 20160188.	1.0	46
62	Alarm substances induce associative social learning in honeybees, Apis mellifera. Animal Behaviour, 2016, 122, 17-22.	0.8	6
63	Signatures of a globally optimal searching strategy in the three-dimensional foraging flights of bumblebees. Scientific Reports, 2016, 6, 30401.	1.6	28
64	Male bumblebees, Bombus terrestris, perform equally well as workers in a serial colour-learning task. Animal Behaviour, 2016, 111, 147-155.	0.8	20
65	Associative Mechanisms Allow for Social Learning and Cultural Transmission of String Pulling in an Insect. PLoS Biology, 2016, 14, e1002564.	2.6	166
66	Monitoring Flower Visitation Networks and Interactions between Pairs of Bumble Bees in a Large Outdoor Flight Cage. PLoS ONE, 2016, 11, e0150844.	1.1	27
67	Life-Long Radar Tracking of Bumblebees. PLoS ONE, 2016, 11, e0160333.	1.1	106
68	Modality-specific attention in foraging bumblebees. Royal Society Open Science, 2015, 2, 150324.	1.1	13
69	Weak and contradictory effects of self-medication with nectar nicotine by parasitized bumblebees. F1000Research, 2015, 4, 73.	0.8	42
70	The effect of polyploidy and hybridization on the evolution of floral colour in <i>Nicotiana</i> (Solanaceae). Annals of Botany, 2015, 115, 1117-1131.	1.4	41
71	Speed and accuracy in nest-mate recognition: a hover wasp prioritizes face recognition over colony odour cues to minimize intrusion by outsiders. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142750.	1.2	32
72	The influence of past experience with flower reward quality on social learning in bumblebees. Animal Behaviour, 2015, 101, 11-18.	0.8	36

#	Article	IF	Citations
73	Speed–accuracy trade-offs and individually consistent decision making by individuals and dyads of zebrafish in a colour discrimination task. Animal Behaviour, 2015, 103, 277-283.	0.8	38
74	Merging of Long-Term Memories in an Insect. Current Biology, 2015, 25, 741-745.	1.8	17
75	Merging of Long-Term Memories in an Insect. Current Biology, 2015, 25, 970.	1.8	0
76	The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology, 2015, 16, 76.	3.8	330
77	Bumblebees utilize floral cues differently on vertically and horizontally arranged flowers. Behavioral Ecology, 2015, 26, 773-781.	1.0	16
78	Behavioural evidence for self-medication in bumblebees?. F1000Research, 2015, 4, 73.	0.8	62
79	Bumblebee colour patterns and predation risk: a reply to Owen (2014). Journal of Zoology, 2014, 292, 133-135.	0.8	0
80	Can Bees See at a Glance?. Journal of Experimental Biology, 2014, 217, 1933-9.	0.8	20
81	Bumblebees (<i>Bombus terrestris < i>) use social information as an indicator of safety in dangerous environments. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133174.</i>	1.2	33
82	Colour constancy in insects. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2014, 200, 435-448.	0.7	41
83	Local enhancement or stimulus enhancement? Bumblebee social learning results in a specific pattern of flower preference. Animal Behaviour, 2014, 97, 185-191.	0.8	35
84	False memory susceptibility is correlated with categorisation ability in humans. F1000Research, 2014, 3, 154.	0.8	4
85	False memory susceptibility is correlated with categorisation ability in humans. F1000Research, 2014, 3, 154.	0.8	4
86	Strategies of the honeybee Apis mellifera during visual search for vertical targets presented at various heights: a role for spatial attention?. F1000Research, 2014, 3, 174.	0.8	6
87	Observational Conditioning in Flower Choice Copying by Bumblebees (Bombus terrestris): Influence of Observer Distance and Demonstrator Movement. PLoS ONE, 2014, 9, e88415.	1.1	31
88	Spatial Memory in Insect Navigation. Current Biology, 2013, 23, R789-R800.	1.8	276
89	Can bees simultaneously engage in adaptive foraging behaviour andÂattend to cryptic predators?. Animal Behaviour, 2013, 86, 859-866.	0.8	32
90	The promise of genomics in the study of plant-pollinator interactions. Genome Biology, 2013, 14, 207.	3.8	29

#	Article	IF	Citations
91	Daily Changes in Ultraviolet Light Levels Can Synchronize the Circadian Clock of Bumblebees (<i>Bombus terrestris</i>). Chronobiology International, 2013, 30, 434-442.	0.9	21
92	Mechanisms of social learning across species boundaries. Journal of Zoology, 2013, 290, 1-11.	0.8	60
93	Convergent evolution of floral signals underlies the success of Neotropical orchids. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130960.	1.2	54
94	Caffeine Boosts Bees' Memories. Science, 2013, 339, 1157-1159.	6.0	12
95	Learning by Observation Emerges from Simple Associations in an Insect Model. Current Biology, 2013, 23, 727-730.	1.8	163
96	The biological significance of color constancy: An agent-based model with bees foraging from flowers under varied illumination. Journal of Vision, 2013, 13, 10-10.	0.1	7
97	Breaking Haller's Rule: Brain-Body Size Isometry in a Minute Parasitic Wasp. Brain, Behavior and Evolution, 2013, 81, 86-92.	0.9	45
98	Unravelling the mechanisms of trapline foraging in bees. Communicative and Integrative Biology, 2013, 6, e22701.	0.6	30
99	A Simple Iterative Model Accurately Captures Complex Trapline Formation by Bumblebees Across Spatial Scales and Flower Arrangements. PLoS Computational Biology, 2013, 9, e1002938.	1.5	43
100	An Exploration of the Social Brain Hypothesis in Insects. Frontiers in Physiology, 2012, 3, 442.	1.3	95
101	Radar Tracking and Motion-Sensitive Cameras on Flowers Reveal the Development of Pollinator Multi-Destination Routes over Large Spatial Scales. PLoS Biology, 2012, 10, e1001392.	2.6	127
102	Bees do not use nearest-neighbour rules for optimization of multi-location routes. Biology Letters, 2012, 8, 13-16.	1.0	54
103	Spatiotemporal Dynamics of Bumblebees Foraging under Predation Risk. Physical Review Letters, 2012, 108, 098103.	2.9	32
104	Your face looks familiar. Nature, 2012, 481, 154-155.	13.7	28
105	Illumination preference, illumination constancy and colour discrimination by bumblebees in an environment with patchy light. Journal of Experimental Biology, 2012, 215, 2173-2180.	0.8	26
106	What is comparable in comparative cognition?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 2677-2685.	1.8	75
107	Epigenetics: The Making of Ant Castes. Current Biology, 2012, 22, R835-R838.	1.8	27
108	No Trade-Off between Learning Speed and Associative Flexibility in Bumblebees: A Reversal Learning Test with Multiple Colonies. PLoS ONE, 2012, 7, e45096.	1.1	77

#	Article	IF	CITATIONS
109	Possible chemical mimicry of the European lady's slipper orchid (Cypripedium calceolus). Contributions To Zoology, 2012, 81, 103-110.	0.2	2
110	Colour-independent shape recognition of cryptic predators by bumblebees. Behavioral Ecology and Sociobiology, 2012, 66, 487-496.	0.6	26
111	Différences Interindividuelles en termes d'Apprentissage des Couleurs, Formes et Odeurs chez le Bourdon (Hymenoptera: Apidae: Bombus terrestris). Entomologia Generalis, 2012, 34, 1-8.	1.1	35
112	Conspecific and Heterospecific Information Use in Bumblebees. PLoS ONE, 2012, 7, e31444.	1.1	60
113	Determining the Contribution of Epidermal Cell Shape to Petal Wettability Using Isogenic Antirrhinum Lines. PLoS ONE, 2011, 6, e17576.	1.1	30
114	Tradeâ€off between travel distance and prioritization of highâ€reward sites in traplining bumblebees. Functional Ecology, 2011, 25, 1284-1292.	1.7	74
115	Animal Cognition: Concepts from Apes to Bees. Current Biology, 2011, 21, R116-R119.	1.8	41
116	Animal Behaviour: Emotion inÂlnvertebrates?. Current Biology, 2011, 21, R463-R465.	1.8	59
117	Do inexperienced bumblebee foragers use scent marks as social information?. Animal Cognition, 2011, 14, 915-919.	0.9	27
118	Is colour cognitive?. Optics and Laser Technology, 2011, 43, 251-260.	2.2	48
119	Information processing in miniature brains. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 885-888.	1.2	41
120	Why do so many petals have conical epidermal cells?. Annals of Botany, 2011, 108, 609-616.	1.4	147
121	Photoreceptor Processing Speed and Input Resistance Changes during Light Adaptation Correlate with Spectral Class in the Bumblebee, Bombus impatiens. PLoS ONE, 2011, 6, e25989.	1.1	12
122	Reuse of identified neurons in multiple neural circuits. Behavioral and Brain Sciences, 2010, 33, 285-285.	0.4	15
123	A failed invasion? Commercially introduced pollinators in Southern France. Apidologie, 2010, 41, 1-13.	0.9	32
124	Bees use three-dimensional information to improve target detection. Die Naturwissenschaften, 2010, 97, 229-233.	0.6	41
125	â€~Personality' in bumblebees: individual consistency in responses to novel colours?. Animal Behaviour, 2010, 80, 1065-1074.	0.8	28
126	Lars Chittka. Current Biology, 2010, 20, R1006-R1008.	1.8	О

#	Article	IF	CITATIONS
127	Bumblebee foraging rhythms under the midnight sun measured with radiofrequency identification. BMC Biology, 2010, 8, 93.	1.7	57
128	Effects of aposematic coloration on predation risk in bumblebees? A comparison between differently coloured populations, with consideration of the ultraviolet. Journal of Zoology, 2010, 282, 75-83.	0.8	16
129	Winter Active Bumblebees (Bombus terrestris) Achieve High Foraging Rates in Urban Britain. PLoS ONE, 2010, 5, e9559.	1.1	97
130	Circadian Foraging Rhythms of Bumblebees Monitored by Radio-frequency Identification. Journal of Biological Rhythms, 2010, 25, 257-267.	1.4	39
131	Differences in Photoreceptor Processing Speed for Chromatic and Achromatic Vision in the Bumblebee, <i>Bombus terrestris </i> Journal of Neuroscience, 2010, 30, 3896-3903.	1.7	70
132	Travel Optimization by Foraging Bumblebees through Readjustments of Traplines after Discovery of New Feeding Locations. American Naturalist, 2010, 176, 744-757.	1.0	108
133	Epigenetics of Royalty. PLoS Biology, 2010, 8, e1000532.	2.6	36
134	Photoreceptor Spectral Sensitivity in the Bumblebee, Bombus impatiens (Hymenoptera: Apidae). PLoS ONE, 2010, 5, e12049.	1.1	66
135	FReD: The Floral Reflectance Database — A Web Portal for Analyses of Flower Colour. PLoS ONE, 2010, 5, e14287.	1.1	86
136	Response to Comment on "Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators― Science, 2009, 325, 1072-1072.	6.0	3
137	Learning, specialization, efficiency and task allocation in social insects. Communicative and Integrative Biology, 2009, 2, 151-154.	0.6	66
138	Predator crypsis enhances behaviourally mediated indirect effects on plants by altering bumblebee foraging preferences. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2031-2036.	1.2	51
139	Bumble-bees learn the value of social cues through experience. Biology Letters, 2009, 5, 310-312.	1.0	71
140	Conical Epidermal Cells Allow Bees to Grip Flowers and Increase Foraging Efficiency. Current Biology, 2009, 19, 948-953.	1.8	169
141	Are Bigger Brains Better?. Current Biology, 2009, 19, R995-R1008.	1.8	542
142	Flower colours along an alpine altitude gradient, seen through the eyes of fly and bee pollinators. Arthropod-Plant Interactions, 2009, 3, 27-43.	0.5	100
143	How floral odours are learned inside the bumblebee (Bombus terrestris) nest. Die Naturwissenschaften, 2009, 96, 213-219.	0.6	68
144	Bird pollination of Canary Island endemic plants. Die Naturwissenschaften, 2009, 96, 221-232.	0.6	39

#	Article	IF	Citations
145	A population comparison of the strength and persistence of innate colour preference and learning speed in the bumblebee Bombus terrestris. Behavioral Ecology and Sociobiology, 2009, 63, 1207-1218.	0.6	91
146	Potential application of the bumblebee foraging recruitment pheromone for commercial greenhouse pollination. Apidologie, 2009, 40, 608-616.	0.9	5
147	Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators. Science, 2009, 323, 130-133.	6.0	345
148	Speed–accuracy tradeoffs in animal decision making. Trends in Ecology and Evolution, 2009, 24, 400-407.	4.2	473
149	Flower color phenology in European grassland and woodland habitats, through the eyes of pollinators. Israel Journal of Plant Sciences, 2009, 57, 211-230.	0.3	24
150	Variability in Sensory Ecology: Expanding the Bridge Between Physiology and Evolutionary Biology. Quarterly Review of Biology, 2009, 84, 51-74.	0.0	80
151	Colony nutritional status modulates worker responses to foraging recruitment pheromone in the bumblebee Bombus terrestris. Behavioral Ecology and Sociobiology, 2008, 62, 1919-1926.	0.6	62
152	The interaction of temperature and sucrose concentration on foraging preferences in bumblebees. Die Naturwissenschaften, 2008, 95, 845-850.	0.6	86
153	Speed-Accuracy Tradeoffs and False Alarms in Bee Responses to Cryptic Predators. Current Biology, 2008, 18, 1520-1524.	1.8	153
154	Animal Personalities: The Advantage of Diversity. Current Biology, 2008, 18, R961-R963.	1.8	31
155	The correlation of learning speed and natural foraging success in bumble-bees. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 803-808.	1.2	272
156	Social transmission of nectar-robbing behaviour in bumble-bees. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1669-1674.	1.2	78
157	Bird pollination of Canary Island endemic plants. Nature Precedings, 2008, , .	0.1	0
158	Cognitive Dimensions of Predator Responses to Imperfect Mimicry. PLoS Biology, 2007, 5, e339.	2.6	95
159	Are Autumn Foliage Colors Red Signals to Aphids?. PLoS Biology, 2007, 5, e187.	2.6	59
160	Cognitive dimensions of predator responses to imperfect mimicry?. Nature Precedings, 2007, , .	0.1	0
161	Bumblebees gain fitness through learning. Nature Precedings, 2007, , .	0.1	0
162	Social Learning in Insects â€" From Miniature Brains to Consensus Building. Current Biology, 2007, 17, R703-R713.	1.8	311

#	Article	IF	CITATIONS
163	Photoreceptor spectral sensitivity in island and mainland populations of the bumblebee, Bombus terrestris. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2007, 193, 485-494.	0.7	100
164	Pollen foraging: learning a complex motor skill by bumblebees (Bombus terrestris). Die Naturwissenschaften, 2007, 94, 459-464.	0.6	96
165	The dynamics of social learning in an insect model, the bumblebee (Bombus terrestris). Behavioral Ecology and Sociobiology, 2007, 61, 1789-1796.	0.6	108
166	Traplining in bumblebees (Bombus impatiens): a foraging strategy's ontogeny and the importance of spatial reference memory in short-range foraging. Oecologia, 2007, 151, 719-730.	0.9	74
167	Visual ecology of aphids—a critical review on the role of colours in host finding. Arthropod-Plant Interactions, 2007, 1, 3-16.	0.5	184
168	Visual search and the importance of time in complex decision making by bees. Arthropod-Plant Interactions, 2007, 1, 37-44.	0.5	47
169	Mutations perturbing petal cell shape and anthocyanin synthesis influence bumblebee perception of Antirrhinum majus flower colour. Arthropod-Plant Interactions, 2007, 1, 45-55.	0.5	116
170	Distinguishing signals and cues: bumblebees use general footprints to generate adaptive behaviour at flowers and nest. Arthropod-Plant Interactions, 2007, 1, 119-127.	0.5	68
171	Bl $\tilde{A}^1\!\!/\!4$ tenstetigkeit und Ged \tilde{A} ehtnisdynamik bei Hummeln (Hymenoptera: Apidae: Bombus). Entomologia Generalis, 2007, 29, 179-199.	1.1	82
172	Kein Nachweis f $\tilde{A}^{1}\!\!/\!\!4$ r Hummelbesuch der Kanarischen Vogelblumen (Hymenoptera: Apidae). Entomologia Generalis, 2007, 30, 153-154.	1.1	1
173	Mengen der Nektarerzeugung bei 75 von Hummeln besuchten Blumenarten in einem deutschen Pflanzenbestand (Hymenoptera: Apidae: Bombus terrestris). Entomologia Generalis, 2007, 30, 191-192.	1.1	21
174	The Adaptive Significance of Sensory Bias in a Foraging Context: Floral Colour Preferences in the Bumblebee Bombus terrestris. PLoS ONE, 2007, 2, e556.	1.1	186
175	Adaptation, Genetic Drift, Pleiotropy, and History in the Evolution of Bee Foraging Behavior. Advances in the Study of Behavior, 2006, , 305-354.	1.0	114
176	Can commercially imported bumble bees out-compete their native conspecifics?. Journal of Applied Ecology, 2006, 43, 940-948.	1.9	104
177	Bees associate warmth with floral colour. Nature, 2006, 442, 525-525.	13.7	170
178	The importance of experience in the interpretation of conspecific chemical signals. Behavioral Ecology and Sociobiology, 2006, 61, 215-220.	0.6	67
179	Do bees like Van Gogh's Sunflowers?. Optics and Laser Technology, 2006, 38, 323-328.	2.2	13
180	Facultative use of the repellent scent mark in foraging bumblebees: complex versus simple flowers. Animal Behaviour, 2006, 71, 847-854.	0.8	60

#	Article	lF	CITATIONS
181	Social Learning: Ants and the Meaning of Teaching. Current Biology, 2006, 16, R323-R325.	1.8	52
182	Animal Cognition: An Insect's Sense of Time?. Current Biology, 2006, 16, R851-R853.	1.8	18
183	Recognition of flowers by pollinators. Current Opinion in Plant Biology, 2006, 9, 428-435.	3.5	368
184	Benefits of recruitment in honey bees: effects of ecology and colony size in an individual-based model. Behavioral Ecology, 2006, 17, 336-344.	1.0	128
185	Do honeybees detect colour targets using serial or parallel visual search?. Journal of Experimental Biology, 2006, 209, 987-993.	0.8	80
186	Unterschiede im Lernverhalten zwischen Kolonien einer freilebenden Britischen Hummelpopulation (Hymenoptera: Apidae: Bombus terrestris audax). Entomologia Generalis, 2006, 28, 241-256.	1.1	71
187	A new mode of information transfer in foraging bumblebees?. Current Biology, 2005, 15, R447-R448.	1.8	93
188	Social Learning: Public Information in Insects. Current Biology, 2005, 15, R869-R871.	1.8	39
189	Chemical compounds of the foraging recruitment pheromone in bumblebees. Die Naturwissenschaften, 2005, 92, 371-374.	0.6	67
190	Bumblebees, humble pollinators or assiduous invaders? A population comparison of foraging performance in Bombus terrestris. Oecologia, 2005, 144, 508-516.	0.9	69
191	Perception Space—The Final Frontier. PLoS Biology, 2005, 3, e137.	2.6	65
192	Analysis of Pollen and Nectar of <l>Arbutus unedo</l> as a Food Source for <l>Bombus terrestris</l> (Hymenoptera: Apidae). Journal of Economic Entomology, 2005, 98, 656-663.	0.8	46
193	Seeing the light: Illumination as a contextual cue to color choice behavior in bumblebees. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 3852-3856.	3.3	52
194	Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces. Journal of Experimental Biology, 2005, 208, 4709-4714.	0.8	169
195	Bumble bees (Bombus terrestris) store both food and information in honeypots. Behavioral Ecology, 2005, 16, 661-666.	1.0	78
196	The role of UV in crab spider signals: effects on perception by prey and predators. Journal of Experimental Biology, 2005, 208, 3925-3931.	0.8	60
197	Colouration in crab spiders: substrate choice and prey attraction. Journal of Experimental Biology, 2005, 208, 1785-1792.	0.8	94
198	Partnerwahl-PrÃferenzen bei der kommerziell importierten Hummel-Art Bombus terrestris in Großbritannien (Hymenoptera: Apidae). Entomologia Generalis, 2005, 28, 233-238.	1.1	30

#	Article	IF	CITATIONS
199	Vergleich der Blütenstetigkeit und Sammelleistung von drei Hummel-Arten (Hymenoptera: Apidae:) Tj ETQq1 1	0.784314 1.1	rgBT /Overl
200	A receiver bias in the origin of three–spined stickleback mate choice. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 949-955.	1.2	96
201	Bumblebee search time without ultraviolet light. Journal of Experimental Biology, 2004, 207, 1683-1688.	0.8	49
202	Chance and adaptation in the evolution of island bumblebee behaviour. Population Ecology, 2004, 46, 243-251.	0.7	86
203	Biological significance of distinguishing between similar colours in spectrally variable illumination: bumblebees (Bombus terrestris) as a case study. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2004, 190, 105-114.	0.7	195
204	Bumblebees (Bombus terrestris) sacrifice foraging speed to solve difficult colour discrimination tasks. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2004, 190, 759-63.	0.7	113
205	Fine colour discrimination requires differential conditioning in bumblebees. Die Naturwissenschaften, 2004, 91, 224-227.	0.6	215
206	Why do honey bees dance?. Behavioral Ecology and Sociobiology, 2004, 55, 395-401.	0.6	163
207	Information flow and regulation of foraging activity in bumble bees (Bombus spp.). Apidologie, 2004, 35, 183-192.	0.9	87
208	Dances as Windows into Insect Perception. PLoS Biology, 2004, 2, e216.	2.6	14
209	Bumble bees alert to food with pheromone from tergal gland. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2003, 189, 47-51.	0.7	48
210	Crab-spiders manipulate flower signals. Nature, 2003, 421, 334-334.	13.7	180
211	Bees trade off foraging speed for accuracy. Nature, 2003, 424, 388-388.	13.7	341
212	Plants and animals, forever entangled. Trends in Ecology and Evolution, 2003, 18, 12-13.	4.2	1
213	Interindividual variation of eye optics and single object resolution in bumblebees. Journal of Experimental Biology, 2003, 206, 3447-3453.	0.8	194
214	The spectral input to honeybee visual odometry. Journal of Experimental Biology, 2003, 206, 2393-2397.	0.8	33
215	Influence of Intermittent Rewards in Learning to Handle Flowers in Bumblebees (Hymenoptera: Apidae:) Tj ETQq1	1 0.78431 1.1	.4 ₄ rgBT /Ov
216	THEEVOLUTION OFCOLORVISION ININSECTS. Annual Review of Entomology, 2001, 46, 471-510.	5.7	1,230

#	Article	IF	CITATIONS
217	Subjective evaluation and choice behavior by nectar-and pollen-collecting bees., 2001,, 41-60.		28
218	Honeybee vision and floral displays: from detection to close-up recognition., 2001,, 61-82.		64
219	Foraging and spatial learning in hummingbirds. , 2001, , 127-147.		18
220	Pollinator individuality: when does it matter?. , 2001, , 191-213.		29
221	The effects of floral design and display on pollinator economics and pollen dispersal., 2001,, 297-317.		48
222	Adaptation, constraint, and chance in the evolution of flower color and pollinator color vision., $2001, 106-126$.		119
223	Behavioral and neural mechanisms of learning and memory as determinants of flower constancy., 2001,, 21-40.		47
224	Floral scent, olfaction, and scent-driven foraging behavior., 2001,, 83-105.		70
225	The effect of variation among floral traits on the flower constancy of pollinators. , 2001, , 1-20.		45
226	Pollinator behavior and plant speciation: looking beyond the "ethological isolation―paradigm. , 2001, , 318-336.		31
227	Food alert in bumblebees (Bombus terrestris): possible mechanisms and evolutionary implications. Behavioral Ecology and Sociobiology, 2001, 50, 570-576.	0.6	118
228	Successful invasion of a floral market. Nature, 2001, 411, 653-653.	13.7	403
229	Visual constraints in foraging bumblebees: Flower size and color affect search time and flight behavior. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3898-3903.	3.3	443
230	Why Sensory Ecology Needs to Become More Evolutionary $\hat{a} \in$ "Insect Color Vision as a Case in Point. , 2001, , 19-37.		26
231	The Sign ificance of the Invasive Crucifer Species Bunias orientalis (Brassicaceae) as a Nectar Source for Central European Insects. Entomologia Generalis, 2001, 25, 115-120.	1.1	16
232	Camouflage of Predatory Crab Spiders on Flowers and the Colour Perception of Bees (Aranida:) Tj ETQq0 0 0 rgBT	-/Pyerlock	. 19 Tf 50 14
233	Limits to the salience of ultraviolet: lessons from colour vision in bees and birds. Journal of Experimental Biology, 2001, 204, 2571-2580.	0.8	124
234	Limits to the salience of ultraviolet: lessons from colour vision in bees and birds. Journal of Experimental Biology, 2001, 204, 2571-80.	0.8	87

#	Article	IF	CITATIONS
235	Navigation without vision: bumblebee orientation in complete darkness. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 45-50.	1.2	80
236	Evolutionary origins of bee dances. Nature, 1999, 401, 38-38.	13.7	158
237	Bees, White Flowers, and the Color Hexagon - A Reassessment? No, Not Yet. Die Naturwissenschaften, 1999, 86, 595-597.	0.6	16
238	Flower Constancy, Insect Psychology, and Plant Evolution. Die Naturwissenschaften, 1999, 86, 361-377.	0.6	543
239	Floral colour diversity in plant communities, bee colour space and a null model. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 1711-1716.	1.2	113
240	Bees travel novel homeward routes by integrating separately acquired vector memories. Animal Behaviour, 1998, 55, 139-152.	0.8	136
241	Bedazzled by flowers. Nature, 1998, 394, 835-836.	13.7	17
242	BEE COLOR VISION IS OPTIMAL FOR CODING FLOWER COLOR, BUT FLOWER COLORS ARE NOT OPTIMAL FOR BEING CODED—WHY?. Israel Journal of Plant Sciences, 1997, 45, 115-127.	0.3	87
243	Foraging dynamics of bumble bees: correlates of movements within and between plant species. Behavioral Ecology, 1997, 8, 239-249.	1.0	224
244	WHY RED FLOWERS ARE NOT INVISIBLE TO BEES. Israel Journal of Plant Sciences, 1997, 45, 169-183.	0.3	199
245	Sensori-motor learning and its relevance for task specialization in bumble bees. Behavioral Ecology and Sociobiology, 1997, 41, 385-398.	0.6	131
246	Why are there so many and so few white flowers?. Trends in Plant Science, 1996, 1, 252.	4.3	147
247	Generalization in Pollination Systems, and Why it Matters. Ecology, 1996, 77, 1043-1060.	1.5	1,553
248	Does bee color vision predate the evolution of flower color?. Die Naturwissenschaften, 1996, 83, 136-138.	0.6	146
249	Optimal Sets of Color Receptors and Color Opponent Systems for Coding of Natural Objects in Insect Vision. Journal of Theoretical Biology, 1996, 181, 179-196.	0.8	122
250	Colour choices of naive bumble bees and their implications for colour perception. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1996, 178, 477.	0.7	174
251	Does Bee Color Vision Predate the Evolution of Flower Color?. Die Naturwissenschaften, 1996, 83, 136-138.	0.6	17
252	The knowledge base of bee navigation. Journal of Experimental Biology, 1996, 199, 141-146.	0.8	86

#	Article	IF	CITATIONS
253	Colour preferences of flower-naive honeybees. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1995, 177, 247.	0.7	294
254	The influences of landmarks on distance estimation of honey bees. Animal Behaviour, 1995, 50, 23-31.	0.8	98
255	Can honey bees count landmarks?. Animal Behaviour, 1995, 49, 159-164.	0.8	193
256	The significance of landmarks for path integration in homing honeybee foragers. Die Naturwissenschaften, 1995, 82, 341-343.	0.6	67
257	Honeybee Longâ€distance Orientation in a Controlled Environment. Ethology, 1995, 99, 117-126.	0.5	30
258	The Significance of Landmarks for Path Integration in Homing Honeybee Foragers. Die Naturwissenschaften, 1995, 82, 341-343.	0.6	7
259	Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera. Vision Research, 1994, 34, 1489-1508.	0.7	408
260	The evolutionary adaptation of flower colours and the insect pollinators' colour vision. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1992, 171, 171.	0.7	309
261	The colour hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of colour opponency. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1992, 170, 533.	0.7	476
262	Opponent colour coding is a universal strategy to evaluate the photoreceptor inputs in Hymenoptera. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1992, 170, 545-63.	0.7	124
263	Dominance of Celestial Cues over Landmarks Disproves Map-Like Orientation in Honey Bees. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1990, 45, 723-726.	0.6	37
264	FReD: The floral reflectance spectra database. Nature Precedings, 0, , .	0.1	19
265	Honeybees (Apis mellifera)Âexhibit flexible visual search strategies for vertical targets presented at various heights. F1000Research, 0, 3, 174.	0.8	2
266	Behavioural evidence for self-medication in bumblebees?. F1000Research, 0, 4, 73.	0.8	32