Yingbin Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/151037/publications.pdf

Version: 2024-02-01

1040056 794594 23 357 9 19 citations h-index g-index papers 23 23 23 337 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Breaking bonds with the left eigenstate completely renormalized coupled-cluster method. Journal of Chemical Physics, 2007, 127, 174106.	3.0	63
2	Theoretical Study of the Pyrolysis of Methyltrichlorosilane in the Gas Phase. 3. Reaction Rate Constant Calculations. Journal of Physical Chemistry A, 2010, 114, 2384-2392.	2.5	60
3	Theoretical Study of the Pyrolysis of Methyltrichlorosilane in the Gas Phase. 2. Reaction Paths and Transition States. Journal of Physical Chemistry A, 2007, 111, 1475-1486.	2.5	46
4	Theoretical Study of the Pyrolysis of Methyltrichlorosilane in the Gas Phase. 1. Thermodynamics. Journal of Physical Chemistry A, 2007, 111, 1462-1474.	2.5	43
5	Breaking Bonds of Open-Shell Species with the Restricted Open-Shell Size Extensive Left Eigenstate Completely Renormalized Coupled-Cluster Method. Journal of Physical Chemistry A, 2008, 112, 11873-11884.	2.5	28
6	Global Optimization of H-Passivated Si Clusters with a Genetic Algorithm. Journal of Physical Chemistry B, 2002, 106, 6997-7004.	2.6	17
7	Global optimization of SixHy at the ab initio level via an iteratively parametrized semiempirical method. International Journal of Quantum Chemistry, 2003, 95, 617-626.	2.0	12
8	Global Optimization of H-Passivated Si Clusters at the Ab Initio Level via the GAM1 Semiempirical Method. Journal of Physical Chemistry B, 2004, 108, 6025-6034.	2.6	12
9	Fast global optimization of SixHy clusters: new mutation operators in the cluster genetic algorithm. Chemical Physics Letters, 2004, 398, 107-112.	2.6	11
10	Tools for Prescreening the Most Active Sites on Ir and Rh Clusters toward C–H Bond Cleavage of Ethane: NBO Charges and Wiberg Bond Indexes. ACS Omega, 2019, 4, 18809-18819.	3 . 5	10
11	A B3LYP study on the C–H activation in propane by neutral and +1 charged low-energy platinum clusters with 2–6 atoms. Reaction Kinetics, Mechanisms and Catalysis, 2013, 109, 315-333.	1.7	9
12	Using a Spreadsheet To Solve the SchrĶdinger Equations for the Energies of the Ground Electronic State and the Two Lowest Excited States of H ₂ . Journal of Chemical Education, 2014, 91, 853-859.	2.3	9
13	The Potential Energy Surface of the H2O2 System. AIP Conference Proceedings, 2006, , .	0.4	7
14	Let Students Derive, by Themselves, Two-Dimensional Atomic and Molecular Quantum Chemistry from Scratch. Journal of Chemical Education, 2016, 93, 2033-2039.	2.3	7
15	Size and Site Dependence of the Catalytic Activity of Iridium Clusters toward Ethane Dehydrogenation. Journal of Physical Chemistry A, 2016, 120, 9500-9508.	2.5	6
16	Ligand effects on Si <i></i> L <i>_y</i> cluster structures with L = H and F. Molecular Physics, 2005, 103, 1035-1045.	1.7	4
17	Theoretical calculations on the hydrogen elimination of ethene with chemical accuracy. Computational and Theoretical Chemistry, 2011, 978, 57-66.	2.5	3
18	Agreement, Complement, and Disagreement to "Why Are Some Reactions Slower at Higher Temperatures?― Journal of Chemical Education, 2017, 94, 821-823.	2.3	3

YINGBIN GE

#	Article	lF	CITATIONS
19	Low-Energy Structures of Ligand Passivated Si Nanoclusters:  Theoretical Investigation of Si ₂ L ₄ and Si ₁₀ L ₁₆ (L = H, CH ₃ , OH, and F). Journal of Physical Chemistry C, 2008, 112, 1819-1824.	3.1	2
20	Assessing density functionals for the prediction of thermochemistry of Ti–O–Cl species. Journal of Theoretical and Computational Chemistry, 2015, 14, 1550055.	1.8	2
21	Can <i>C_P</i> Be Less Than <i>C_V</i> ?. ACS Omega, 2021, 6, 11083-11085.	3.5	2
22	On Teaching Molecular Term Symbols: From the Atomic Term Symbols in a Two-Dimensional World to the Molecular Term Symbols in a Three-Dimensional World. Journal of Chemical Education, 2018, 95, 1682-1683.	2.3	1
23	Comment on "Quirks of Stirling's Approximation― Journal of Chemical Education, 2018, 95, 686-688.	2.3	0