
## Manuel Romero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1510217/publications.pdf Version: 2024-02-01



MANUEL ROMERO

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Concentrating solar thermal power and thermochemical fuels. Energy and Environmental Science, 2012, 5, 9234.                                                                                                                       | 30.8 | 591       |
| 2  | Solar Energy on Demand: A Review on High Temperature Thermochemical Heat Storage Systems and<br>Materials. Chemical Reviews, 2019, 119, 4777-4816.                                                                                 | 47.7 | 335       |
| 3  | An Update on Solar Central Receiver Systems, Projects, and Technologies. Journal of Solar Energy<br>Engineering, Transactions of the ASME, 2002, 124, 98-108.                                                                      | 1.8  | 258       |
| 4  | Evaluation of porous silicon carbide monolithic honeycombs as volumetric receivers/collectors of concentrated solar radiation. Solar Energy Materials and Solar Cells, 2007, 91, 474-488.                                          | 6.2  | 185       |
| 5  | Thermochemical energy storage at high temperature via redox cycles of Mn and Co oxides: Pure oxides versus mixed ones. Solar Energy Materials and Solar Cells, 2014, 123, 47-57.                                                   | 6.2  | 137       |
| 6  | SOLAR PHOTOCATALYTIC DEGRADATION OF WATER AND AIR POLLUTANTS: CHALLENGES AND PERSPECTIVES. Solar Energy, 1999, 66, 169-182.                                                                                                        | 6.1  | 128       |
| 7  | Numerical and experimental studies on heat transfer characteristics of thermal energy storage system packed with molten salt PCM capsules. Applied Thermal Engineering, 2015, 90, 970-979.                                         | 6.0  | 127       |
| 8  | Methodology for generation of heliostat field layout in central receiver systems based on yearly normalized energy surfaces. Solar Energy, 2006, 80, 861-874.                                                                      | 6.1  | 121       |
| 9  | Solar thermal <scp>CSP</scp> technology. Wiley Interdisciplinary Reviews: Energy and Environment, 2014, 3, 42-59.                                                                                                                  | 4.1  | 109       |
| 10 | Solar hydrogen production by two-step thermochemical cycles: Evaluation of the activity of commercial ferrites. International Journal of Hydrogen Energy, 2009, 34, 2918-2924.                                                     | 7.1  | 107       |
| 11 | Review of experimental investigation on directly irradiated particles solar reactors. Renewable and Sustainable Energy Reviews, 2015, 41, 53-67.                                                                                   | 16.4 | 105       |
| 12 | Numerical analysis of charging and discharging performance of a thermal energy storage system with encapsulated phase change material. Applied Thermal Engineering, 2014, 71, 481-500.                                             | 6.0  | 99        |
| 13 | The melting process of storage materials with relatively high phase change temperatures in partially filled spherical shells. Applied Energy, 2014, 116, 243-252.                                                                  | 10.1 | 77        |
| 14 | Thermal and hydrodynamic behavior of ceramic volumetric absorbers for central receiver solar power plants: A review. Renewable and Sustainable Energy Reviews, 2016, 57, 648-658.                                                  | 16.4 | 66        |
| 15 | Optimal integration of a solid-oxide electrolyser cell into a direct steam generation solar tower plant for zero-emission hydrogen production. Applied Energy, 2014, 131, 238-247.                                                 | 10.1 | 59        |
| 16 | Kinetics of Mn <sub>2</sub> O <sub>3</sub> –Mn <sub>3</sub> O <sub>4</sub> and<br>Mn <sub>3</sub> O <sub>4</sub> –MnO Redox Reactions Performed under Concentrated Thermal<br>Radiative Flux. Energy & Fuels, 2013, 27, 4884-4890. | 5.1  | 57        |
| 17 | Influence of temperature on gas-phase photo-assisted mineralization of TCE using tubular and monolithic catalysts. Catalysis Today, 1999, 54, 369-377.                                                                             | 4.4  | 53        |
| 18 | Design and off-design performance comparison of supercritical carbon dioxide Brayton cycles for<br>particle-based high temperature concentrating solar power plants. Energy Conversion and<br>Management, 2021, 232, 113870.       | 9.2  | 53        |

Manuel Romero

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Annual performance of solar tower aided coal-fired power generation system. Energy, 2017, 119, 662-674.                                                                                                             | 8.8  | 49        |
| 20 | Part load operation of a solid oxide electrolysis system for integration with renewable energy sources. International Journal of Hydrogen Energy, 2015, 40, 8291-8303.                                              | 7.1  | 40        |
| 21 | Numerical analysis of radiation propagation in a multi-layer volumetric solar absorber composed of a stack of square grids. Solar Energy, 2015, 121, 94-102.                                                        | 6.1  | 37        |
| 22 | Soiling effect in solar energy conversion systems: A review. Renewable and Sustainable Energy Reviews, 2022, 162, 112434.                                                                                           | 16.4 | 36        |
| 23 | Optical Analysis of a Hexagonal 42kWe High-flux Solar Simulator. Energy Procedia, 2014, 57, 590-596.                                                                                                                | 1.8  | 35        |
| 24 | Analysis of air return alternatives for CRS-type open volumetric reciever. Energy, 2004, 29, 677-686.                                                                                                               | 8.8  | 30        |
| 25 | Thermal performance of lab-scale solar reactor designed for kinetics analysis at high radiation fluxes. Chemical Engineering Science, 2013, 101, 81-89.                                                             | 3.8  | 28        |
| 26 | Macroencapsulation of sodium chloride as phase change materials for thermal energy storage. Solar<br>Energy, 2018, 167, 1-9.                                                                                        | 6.1  | 26        |
| 27 | Performance comparison of different thermodynamic cycles for an innovative central receiver solar power plant. AIP Conference Proceedings, 2017, , .                                                                | 0.4  | 24        |
| 28 | Analysis of Net Zero-energy Building in Spain. Integration of PV, Solar Domestic Hot Water and<br>Air-conditioning Systems. Energy Procedia, 2014, 48, 828-836.                                                     | 1.8  | 21        |
| 29 | Distributed power from solar tower systems: a MIUS approach. Solar Energy, 1999, 67, 249-264.                                                                                                                       | 6.1  | 20        |
| 30 | Optimization of solar aided coal-fired power plant layouts using multi-criteria assessment. Applied<br>Thermal Engineering, 2018, 137, 406-418.                                                                     | 6.0  | 20        |
| 31 | Numerical Investigation of PCM-based Thermal Energy Storage System. Energy Procedia, 2015, 69, 758-768.                                                                                                             | 1.8  | 18        |
| 32 | Coupling of a Solid-oxide Cell Unit and a Linear Fresnel Reflector Field for Grid Management. Energy<br>Procedia, 2014, 57, 706-715.                                                                                | 1.8  | 17        |
| 33 | A directly irradiated solar reactor for kinetic analysis of non-volatile metal oxides reductions.<br>International Journal of Energy Research, 2015, 39, 1217-1228.                                                 | 4.5  | 17        |
| 34 | Optical performance of vertical heliostat fields integrated in building façades for concentrating solar energy uses. Solar Energy, 2013, 97, 447-459.                                                               | 6.1  | 15        |
| 35 | Comparative System Performance Analysis of Direct Steam Generation Central Receiver Solar Thermal<br>Power Plants in Megawatt Range. Journal of Solar Energy Engineering, Transactions of the ASME, 2014,<br>136, . | 1.8  | 15        |
| 36 | Thermo-economic analysis of a particle-based multi-tower solar power plant using unfired combined cycle for evening peak power generation. Energy, 2022, 240, 122798.                                               | 8.8  | 15        |

Manuel Romero

| #  | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Transient Numerical Analysis of Storage Tanks Based on Encapsulated PCMs for Heat Storage in<br>Concentrating Solar Power Plants. Energy Procedia, 2014, 57, 672-681.                                                               | 1.8 | 14        |
| 38 | Solar-Driven Thermochemical Water-Splitting by Cerium Oxide: Determination of Operational Conditions in a Directly Irradiated Fixed Bed Reactor. Energies, 2018, 11, 2451.                                                          | 3.1 | 13        |
| 39 | Liquid fuels from concentrated sunlight: An overview on development and integration of a 50 kW solar thermochemical reactor and high concentration solar field for the SUN-to-LIQUID project. AIP Conference Proceedings, 2019, , . | 0.4 | 13        |
| 40 | Analysis of solid-state reaction in the performance of doped calcium manganites for thermal storage.<br>Solid State Ionics, 2019, 338, 47-57.                                                                                       | 2.7 | 12        |
| 41 | A Novel Lab-scale Solar Reactor for Kinetic Analysis of Non-volatile Metal Oxides Thermal Reductions.<br>Energy Procedia, 2014, 57, 561-569.                                                                                        | 1.8 | 11        |
| 42 | Numerical analysis of radiation propagation in innovative volumetric receivers based on selective laser melting techniques. AIP Conference Proceedings, 2016, , .                                                                   | 0.4 | 11        |
| 43 | Multi-Tubular Reactor for Hydrogen Production: CFD Thermal Design and Experimental Testing.<br>Processes, 2019, 7, 31.                                                                                                              | 2.8 | 11        |
| 44 | Exergetic analysis of hybrid power plants with biomass and photovoltaics coupled with a solid-oxide electrolysis system. Energy, 2016, 94, 304-315.                                                                                 | 8.8 | 10        |
| 45 | Ultra-modular 500m2 heliostat field for high flux/high temperature solar-driven processes. AIP<br>Conference Proceedings, 2017, , .                                                                                                 | 0.4 | 10        |
| 46 | Performance assessment of concentrated solar power plants based on carbon and hydrogen fuel cells. International Journal of Hydrogen Energy, 2018, 43, 5852-5862.                                                                   | 7.1 | 10        |
| 47 | Optical and thermal integration analysis of supercritical CO2 Brayton cycles with a particle-based solar thermal plant based on annual performance. Renewable Energy, 2022, 189, 164-179.                                           | 8.9 | 10        |
| 48 | Phase Change and Heat Transfer Numerical Analysis during Solidification on an Encapsulated Phase<br>Change Material. Energy Procedia, 2014, 57, 653-661.                                                                            | 1.8 | 9         |
| 49 | Numerical Modeling of Solar Thermochemical Reactor for Kinetic Analysis. Energy Procedia, 2014, 49,<br>735-742.                                                                                                                     | 1.8 | 9         |
| 50 | Comparison of Experimental and Numerical Air Temperature Distributions Behind a Cylindrical<br>Volumetric Solar Absorber Module. Journal of Solar Energy Engineering, Transactions of the ASME,<br>2008, 130, .                     | 1.8 | 8         |
| 51 | Analysis of solar shading caused by building-integrated Vertical Heliostat Fields. Energy and Buildings, 2014, 76, 199-210.                                                                                                         | 6.7 | 8         |
| 52 | A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers. AIP Conference Proceedings, 2016, , .                                                                              | 0.4 | 8         |
| 53 | Recent experiences on reflectant module components for innovative heliostats. Solar Energy<br>Materials and Solar Cells, 1991, 24, 320-332.                                                                                         | 0.4 | 7         |
| 54 | A new calorimetric facility to investigate radiative-convective heat exchangers for concentrated solar power applications. International Journal of Energy Research, 2018, 42, 966-976.                                             | 4.5 | 7         |

MANUEL ROMERO

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Application of un-fired closed Brayton cycle with mass flow regulation and particles-based thermal energy storage systems for CSP. AIP Conference Proceedings, 2019, , .                                              | 0.4 | 7         |
| 56 | Particles-based thermal energy storage systems for concentrated solar power. AIP Conference Proceedings, 2018, , .                                                                                                    | 0.4 | 6         |
| 57 | Drift analysis in tilt-roll heliostats. Solar Energy, 2020, 211, 1170-1183.                                                                                                                                           | 6.1 | 6         |
| 58 | Analysis of glint and glare produced by the receiver of small heliostat fields integrated in building<br>façades. Methodology applicable to conventional central receiver systems. Solar Energy, 2015, 121,<br>68-77. | 6.1 | 5         |
| 59 | A parametric experimental study of aerothermal performance and efficiency in monolithic volumetric absorbers. AIP Conference Proceedings, 2017, , .                                                                   | 0.4 | 5         |
| 60 | Heat exchanger modelling in central receiver solar power plant using dense particle suspension. AIP Conference Proceedings, 2017, , .                                                                                 | 0.4 | 5         |
| 61 | Design of "SIREC-1―Wire Mesh Open Volumetric Solar Receiver Prototype. , 2001, , .                                                                                                                                    |     | 4         |
| 62 | CRISPTower – A Solar Power Tower R&D Initiative in India. Energy Procedia, 2014, 57, 301-310.                                                                                                                         | 1.8 | 3         |
| 63 | Determination of Glint and Glare of Heliostat Fields Integrated on Building Façades Energy Procedia, 2014, 57, 331-340.                                                                                               | 1.8 | 3         |
| 64 | Numerical modelling of a 100-Wh lab-scale thermochemical heat storage system for concentrating solar power plants. AIP Conference Proceedings, 2016, , .                                                              | 0.4 | 3         |
| 65 | Integrated solar combined cycle using particles as heat transfer fluid and thermal energy storage medium for flexible electricity dispatch. AIP Conference Proceedings, 2020, , .                                     | 0.4 | 2         |
| 66 | Performance of a CRS with stretched membrane heliostats for steam reforming of methane. Solar<br>Energy Materials and Solar Cells, 1991, 24, 707-719.                                                                 | 0.4 | 0         |