Pierre Pétriacq

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1510022/publications.pdf Version: 2024-02-01

Ριέρρε ΡΔΩτριλός

#	Article	IF	CITATIONS
1	Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience. New Phytologist, 2022, 234, 1614-1628.	7.3	17
2	Untangling plant immune responses through metabolomics. Advances in Botanical Research, 2021, 98, 73-105.	1.1	4
3	Developmental metabolomics to decipher and improve fleshy fruit quality. Advances in Botanical Research, 2021, 98, 3-34.	1.1	6
4	Overproduction of ascorbic acid impairs pollen fertility in tomato. Journal of Experimental Botany, 2021, 72, 3091-3107.	4.8	30
5	Population genomics of apricots unravels domestication history and adaptive events. Nature Communications, 2021, 12, 3956.	12.8	45
6	Unravelling Plant Responses to Stress—The Importance of Targeted and Untargeted Metabolomics. Metabolites, 2021, 11, 558.	2.9	21
7	Plant metabolomics and breeding. Advances in Botanical Research, 2021, , 207-235.	1.1	7
8	The Evolution of Leaf Function during Development Is Reflected in Profound Changes in the Metabolic Composition of the Vacuole. Metabolites, 2021, 11, 848.	2.9	4
9	Special Issue on "Fruit Metabolism and Metabolomics― Metabolites, 2020, 10, 230.	2.9	2
10	Editorial: NAD Metabolism and Signaling in Plants. Frontiers in Plant Science, 2020, 11, 146.	3.6	3
11	Metabolomics to Exploit the Primed Immune System of Tomato Fruit. Metabolites, 2020, 10, 96.	2.9	28
12	Molecular underpinnings of methyl jasmonateâ€induced resistance in Norway spruce. Plant, Cell and Environment, 2020, 43, 1827-1843.	5.7	30
13	Regulation of Pyridine Nucleotide Metabolism During Tomato Fruit Development Through Transcript and Protein Profiling. Frontiers in Plant Science, 2019, 10, 1201.	3.6	20
14	Get the Balance Right: ROS Homeostasis and Redox Signalling in Fruit. Frontiers in Plant Science, 2019, 10, 1091.	3.6	127
15	Modeling Protein Destiny in Developing Fruit. Plant Physiology, 2019, 180, 1709-1724.	4.8	33
16	Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME Journal, 2019, 13, 1647-1658.	9.8	210
17	An Adjustable Protocol to Analyze Chemical Profiles of Non-sterile Rhizosphere Soil. Bio-protocol, 2019, 9, e3245.	0.4	0
18	Chemical priming of immunity without costs to plant growth. New Phytologist, 2018, 218, 1205-1216.	7.3	67

Pierre Pétriacq

#	Article	IF	CITATIONS
19	Mechanisms of glacialâ€ŧoâ€future atmospheric <scp>CO</scp> ₂ effects on plant immunity. New Phytologist, 2018, 218, 752-761.	7.3	38
20	More to NAD+ than meets the eye: A regulator of metabolic pools and gene expression in Arabidopsis. Free Radical Biology and Medicine, 2018, 122, 86-95.	2.9	49
21	Characterization of l -aspartate oxidase from Arabidopsis thaliana. Plant Science, 2018, 271, 133-142.	3.6	29
22	Longâ€lasting βâ€aminobutyric acidâ€induced resistance protects tomato fruit against <i>Botrytis cinerea</i> . Plant Pathology, 2018, 67, 30-41.	2.4	58
23	NAD ⁺ Biosynthesis and Signaling in Plants. Critical Reviews in Plant Sciences, 2018, 37, 259-307.	5.7	71
24	Fruit Decay to Diseases: Can Induced Resistance and Priming Help?. Plants, 2018, 7, 77.	3.5	48
25	Impacts of Atmospheric CO2 and Soil Nutritional Value on Plant Responses to Rhizosphere Colonization by Soil Bacteria. Frontiers in Plant Science, 2018, 9, 1493.	3.6	21
26	Metabolite profiling of nonâ€sterile rhizosphere soil. Plant Journal, 2017, 92, 147-162.	5.7	141
27	Photoperiod Affects the Phenotype of Mitochondrial Complex I Mutants. Plant Physiology, 2017, 173, 434-455.	4.8	22
28	Manipulation of ABA Content in Arabidopsis thaliana Modifies Sensitivity and Oxidative Stress Response to Dickeya dadantii and Influences Peroxidase Activity. Frontiers in Plant Science, 2017, 8, 456.	3.6	17
29	Changes of Metabolites Status in Plant Pathogen Interaction. Advanced Science Letters, 2017, 23, 4623-4626.	0.2	4
30	NAD Acts as an Integral Regulator of Multiple Defense Layers. Plant Physiology, 2016, 172, 1465-1479.	4.8	85
31	Pyridine nucleotides induce changes in cytosolic pools of calcium in Arabidopsis. Plant Signaling and Behavior, 2016, 11, e1249082.	2.4	8
32	Spore Density Determines Infection Strategy by the Plant Pathogenic Fungus <i>Plectosphaerella cucumerina</i> . Plant Physiology, 2016, 170, 2325-2339.	4.8	56
33	Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nature Chemical Biology, 2014, 10, 450-456.	8.0	128
34	NAD. Plant Signaling and Behavior, 2013, 8, e22477.	2.4	60
35	Inducible NAD overproduction in Arabidopsis alters metabolic pools and gene expression correlated with increased salicylate content and resistance to <i>Pstâ€AvrRpm1</i> . Plant Journal, 2012, 70, 650-665.	5.7	95
36	Respiratory complex I deficiency induces drought tolerance by impacting leaf stomatal and hydraulic conductances. Planta, 2012, 235, 603-614.	3.2	30

#	Article	IF	CITATIONS
37	Liquid chromatography/time-of-flight mass spectrometry for the analysis of plant samples: A method for simultaneous screening of common cofactors or nucleotides and application to an engineered plant line. Plant Physiology and Biochemistry, 2011, 49, 1117-1125.	5.8	29