Dongyang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1509059/publications.pdf

Version: 2024-02-01

54 papers 3,023 citations

218381 26 h-index 54 g-index

54 all docs

54 docs citations

54 times ranked 1615 citing authors

#	Article	IF	CITATIONS
1	Honeycomb-like puckered PbSe with wide bandgap as promising thermoelectric material: a first-principles prediction. Materials Today Energy, 2022, 23, 100914.	2.5	11
2	Realizing synergistic optimization of thermoelectric properties in n-type BiSbSe3 polycrystals via co-doping zirconium and halogen. Materials Today Physics, 2022, 22, 100608.	2.9	7
3	Outstanding CdSe with Multiple Functions Leads to High Performance of GeTe Thermoelectrics. Advanced Energy Materials, 2022, 12, .	10.2	21
4	Enhanced thermoelectric perfromance in cubic form of SnSe stabilized through enformatingly alloying AgSbTe2. Acta Materialia, 2022, 227, 117681.	3.8	16
5	Synergistically enhanced electrical transport properties of SrTiO ₃ <i>via</i> Fermi level regulation and modulation doping. Journal of Materials Chemistry C, 2022, 10, 13851-13859.	2.7	1
6	Investigations on the Thermoelectric Transport Properties in the Holeâ€doped La ₂ CuO ₄ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2022, 648, .	0.6	2
7	A promising thermoelectrics In4SnSe4 with a wide bandgap and cubic structure composited by layered SnSe and In4Se3. Journal of Materiomics, 2022, 8, 982-991.	2.8	5
8	High thermoelectric performance realized through manipulating layered phonon-electron decoupling. Science, 2022, 375, 1385-1389.	6.0	194
9	One–One Correspondence between n-Type SnTe Thermoelectric and Topological Phase Transition. Chemistry of Materials, 2022, 34, 3423-3429.	3.2	11
10	Synergistically enhanced thermoelectric properties in n-type Bi6Cu2Se4O6 through inducing resonant levels. Acta Materialia, 2022, 232, 117930.	3.8	13
11	Enhanced thermoelectric performance in SnTe due to the energy filtering effect introduced by Bi2O3. Materials Today Energy, 2022, 25, 100985.	2.5	13
12	Boosting thermoelectric performance of n-type PbS through synergistically integrating In resonant level and Cu dynamic doping. Journal of Physics and Chemistry of Solids, 2021, 148, 109640.	1.9	26
13	Boosting the thermoelectric performance of GeTe by manipulating the phase transition temperature <i>via</i> Sb doping. Journal of Materials Chemistry C, 2021, 9, 6484-6490.	2.7	19
14	Hierarchical structures lead to high thermoelectric performance in Cu _{m+n} Pb ₁₀₀ Sb _m Te ₁₀₀ Se _{2m} (CLAST). Energy and Environmental Science, 2021, 14, 451-461.	15.6	47
15	Contrasting Thermoelectric Transport Properties of n-Type PbS Induced by Adding Ni and Zn. ACS Applied Energy Materials, 2021, 4, 6284-6289.	2.5	5
16	Contrasting Cu Roles Lead to High Ranged Thermoelectric Performance of PbS. Advanced Functional Materials, 2021, 31, 2102185.	7.8	33
17	Low carrier concentration leads to high in-plane thermoelectric performance in n-type SnS crystals. Science China Materials, 2021, 64, 3051-3058.	3.5	16
18	Dynamic carrier transports and low thermal conductivity in <i>n< i>â€ŧype layered InSe thermoelectrics. Aggregate, 2021, 2, e92.</i>	5.2	14

#	Article	IF	Citations
19	Realizing N-type SnTe Thermoelectrics with Competitive Performance through Suppressing Sn Vacancies. Journal of the American Chemical Society, 2021, 143, 8538-8542.	6.6	51
20	Slowing down the heat in thermoelectrics. InformaÄnÃ-Materiály, 2021, 3, 755-789.	8.5	57
21	An Update Review on N-Type Layered Oxyselenide Thermoelectric Materials. Materials, 2021, 14, 3905.	1.3	12
22	Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments. Science, 2021, 373, 556-561.	6.0	270
23	Realizing high doping efficiency and thermoelectric performance in n-type SnSe polycrystals via bandgap engineering and vacancy compensation. Materials Today Physics, 2021, 20, 100452.	2.9	16
24	Enhancing thermoelectric performance of n-type Bi6Cu2Se4O6 through introducing transition metal elements. Scripta Materialia, 2021, 202, 114010.	2.6	10
25	Band convergence and nanostructure modulations lead to high thermoelectric performance in SnPb0.04Te-y% AgSbTe2. Materials Today Physics, 2021, 21, 100505.	2.9	17
26	Rationally optimized carrier effective mass and carrier density leads to high average <i>ZT</i> value in n-type PbSe. Journal of Materials Chemistry A, 2021, 9, 23011-23018.	5.2	15
27	Realizing High Thermoelectric Performance in Polycrystalline SnSe via Silver Doping and Germanium Alloying. ACS Applied Energy Materials, 2020, 3, 2049-2054.	2.5	52
28	An approach of enhancing thermoelectric performance for p-type PbS: Decreasing electronic thermal conductivity. Journal of Alloys and Compounds, 2020, 820, 153453.	2.8	22
29	Synergistically Enhancing Thermoelectric Performance of nâ€Type PbTe with Indium Doping and Sulfur Alloying. Annalen Der Physik, 2020, 532, 1900421.	0.9	19
30	Thermoelectric transport properties of PbS and its contrasting electronic band structures. Scripta Materialia, 2020, 185, 76-81.	2.6	7
31	Extremely low thermal conductivity from bismuth selenohalides with 1D soft crystal structure. Science China Materials, 2020, 63, 1759-1768.	3.5	38
32	Synergistically improving thermoelectric and mechanical properties of Ge0.94Bi0.06Te through dispersing nano-SiC. Scripta Materialia, 2020, 183, 22-27.	2.6	29
33	Ultrahigh Average <i>ZT</i> Realized in p-Type SnSe Crystalline Thermoelectrics through Producing Extrinsic Vacancies. Journal of the American Chemical Society, 2020, 142, 5901-5909.	6.6	94
34	Contrasting roles of small metallic elements M (M = Cu, Zn, Ni) in enhancing the thermoelectric performance of n-type PbM $<$ sub $>$ 0.01 $<$ /sub $>$ 5e. Journal of Materials Chemistry A, 2020, 8, 5699-5708.	5.2	32
35	Improving the thermoelectric performance of p-type PbSe <i>via</i> synergistically enhancing the Seebeck coefficient and reducing electronic thermal conductivity. Journal of Materials Chemistry A, 2020, 8, 4931-4937.	5.2	34
36	Band Sharpening and Band Alignment Enable High Quality Factor to Enhance Thermoelectric Performance in <i>n</i> -Type PbS. Journal of the American Chemical Society, 2020, 142, 4051-4060.	6.6	130

#	Article	IF	Citations
37	Contrasting Thermoelectric Transport Behaviors of $\langle i \rangle p \langle i \rangle$ -Type PbS Caused by Doping Alkali Metals (Li and Na). Research, 2020, 2020, 4084532.	2.8	2
38	Oxygen adsorption and its influence on the thermoelectric performance of polycrystalline SnSe. Journal of Materials Chemistry C, 2019, 7, 10507-10513.	2.7	28
39	Realizing High Thermoelectric Performance in GeTe through Optimizing Ge Vacancies and Manipulating Ge Precipitates. ACS Applied Energy Materials, 2019, 2, 7594-7601.	2.5	61
40	High thermoelectric performance in low-cost SnS _{0.91} Se _{0.09} crystals. Science, 2019, 365, 1418-1424.	6.0	395
41	Realizing Highâ€Ranged Outâ€ofâ€Plane ZTs in Nâ€Type SnSe Crystals through Promoting Continuous Phase Transition. Advanced Energy Materials, 2019, 9, 1901334.	10.2	83
42	Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloying CdSe. Energy and Environmental Science, 2019, 12, 1969-1978.	15.6	99
43	Amphoteric Indium Enables Carrier Engineering to Enhance the Power Factor and Thermoelectric Performance in ⟨i>n⟨ i>‶ype Ag⟨ i>⟨sub>n⟨ sub>⟨ i>Pb⟨sub>100⟨ sub> n⟨ sub>n⟨ sub>⟨ i>Te⟨sub>100+2⟨ sub>⟨i>⟨sub>⟨i>⟨sub>⟨ i>⟩(LIST), Advanced Energy Materials, 2019, 9, 1900414.	10.2	60
44	Synergistically optimized electrical and thermal transport properties of polycrystalline SnSe via alloying SnS. Journal of Solid State Chemistry, 2019, 273, 85-91.	1.4	23
45	Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature <i>via</i> entropy engineering. Journal of Materials Chemistry A, 2019, 7, 26393-26401.	5. 2	103
46	Enhancing the thermoelectric performance of Bi2S3: A promising earth-abundant thermoelectric material. Frontiers of Physics, $2019, 14, 1$.	2.4	24
47	Enhancing thermoelectric performance of SnTe via stepwisely optimizing electrical and thermal transport properties. Journal of Alloys and Compounds, 2019, 773, 571-584.	2.8	37
48	Intrinsically Low Thermal Conductivity in BiSbSe ₃ : A Promising Thermoelectric Material with Multiple Conduction Bands. Advanced Functional Materials, 2019, 29, 1806558.	7.8	86
49	Realizing High Thermoelectric Performance in p-Type SnSe through Crystal Structure Modification. Journal of the American Chemical Society, 2019, 141, 1141-1149.	6.6	137
50	Remarkable electron and phonon band structures lead to a high thermoelectric performance <i>ZT</i> > 1 in earth-abundant and eco-friendly SnS crystals. Journal of Materials Chemistry A, 2018, 6, 10048-10056.	5.2	90
51	Thermoelectric transport properties of rock-salt SnSe: first-principles investigation. Journal of Materials Chemistry C, 2018, 6, 12016-12022.	2.7	43
52	Approaching Topological Insulating States Leads to High Thermoelectric Performance in n-Type PbTe. Journal of the American Chemical Society, 2018, 140, 13097-13102.	6.6	77
53	Realizing high performance n-type PbTe by synergistically optimizing effective mass and carrier mobility and suppressing bipolar thermal conductivity. Energy and Environmental Science, 2018, 11, 2486-2495.	15.6	200
54	Simultaneously enhancing the power factor and reducing the thermal conductivity of SnTe via introducing its analogues. Energy and Environmental Science, 2017, 10, 2420-2431.	15.6	116