
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1508566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	VEGF165b, an Inhibitory Vascular Endothelial Growth Factor Splice Variant. Cancer Research, 2004, 64, 7822-7835.	0.4	416
2	Role of Nitric Oxide in Angiogenesis and Tumor Progression in Head and Neck Cancer. Journal of the National Cancer Institute, 1998, 90, 587-596.	3.0	404
3	Nitric Oxide Is an Upstream Signal of Vascular Endothelial Growth Factor-induced Extracellular Signal-regulated Kinase½ Activation in Postcapillary Endothelium. Journal of Biological Chemistry, 1998, 273, 4220-4226.	1.6	392
4	Nitric oxide and angiogenesis. Journal of Neuro-Oncology, 2000, 50, 139-148.	1.4	315
5	Substance P stimulates neovascularization in vivo and proliferation of cultured endothelial cells. Microvascular Research, 1990, 40, 264-278.	1.1	268
6	Luteolin Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis; Inhibition of Endothelial Cell Survival and Proliferation by Targeting Phosphatidylinositol 3′-Kinase Activity. Cancer Research, 2004, 64, 7936-7946.	0.4	194
7	Analysis of the role of chemokines in angiogenesis. Journal of Immunological Methods, 2003, 273, 83-101.	0.6	168
8	Role of Nitric Oxide in the Modulation of Angiogenesis. Current Pharmaceutical Design, 2003, 9, 521-530.	0.9	161
9	The bradykinin/B1 receptor promotes angiogenesis by upâ€regulation of endogenous FGFâ€2 in endothelium via the nitric oxide synthase pathway. FASEB Journal, 2001, 15, 1487-1489.	0.2	147
10	The heparin binding 25 kDa fragment of thrombospondinâ€1 promotes angiogenesis and modulates gelatinase and TIMPâ€2 production in endothelial cells. FASEB Journal, 2000, 14, 1674-1676.	0.2	146
11	The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions. Journal of Biomedical Materials Research - Part A, 2006, 76A, 656-663.	2.1	106
12	Prostaglandin E2 Regulates Angiogenesis via Activation of Fibroblast Growth Factor Receptor-1. Journal of Biological Chemistry, 2008, 283, 2139-2146.	1.6	104
13	The Impact of Microgravity and Hypergravity on Endothelial Cells. BioMed Research International, 2015, 2015, 1-13.	0.9	103
14	NK ₁ â€receptors mediate the proliferative response of human fibroblasts to tachykinins. British Journal of Pharmacology, 1990, 100, 11-14.	2.7	101
15	ENDOTHELIAL CELLS IN CULTURE: A MODEL FOR STUDYING VASCULAR FUNCTIONS. Pharmacological Research, 2000, 42, 9-19.	3.1	99
16	Abolished angiogenicity and tumorigenicity of Burkitt lymphoma by interleukin-10. Blood, 2000, 96, 2568-2573.	0.6	90
17	Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis. Biochemical Pharmacology, 2012, 84, 303-311.	2.0	88
18	EP2 prostanoid receptor promotes squamous cell carcinoma growth through epidermal growth factor receptor transactivation and iNOS and ERK1/2 pathways. FASEB Journal, 2007, 21, 2418-2430.	0.2	86

#	Article	IF	CITATIONS
19	Stemness marker ALDH1A1 promotes tumor angiogenesis via retinoic acid/HIF-1α/VEGF signalling in MCF-7 breast cancer cells. Journal of Experimental and Clinical Cancer Research, 2018, 37, 311.	3.5	83
20	I-309 binds to and activates endothelial cell functions and acts as an angiogenic molecule in vivo. Blood, 2000, 96, 4039-4045.	0.6	82
21	B1 receptor involvement in the effect of bradykinin on venular endothelial cell proliferation and potentiation of FGF-2 effects. British Journal of Pharmacology, 1998, 124, 1286-1292.	2.7	80
22	VEGF induces signalling and angiogenesis by directing VEGFR2 internalisation via macropinocytosis Journal of Cell Science, 2016, 129, 4091-4104.	1.2	80
23	Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic signals. Biochemical and Biophysical Research Communications, 2005, 334, 491-499.	1.0	75
24	Divergent effects of quercetin conjugates on angiogenesis. British Journal of Nutrition, 2006, 95, 1016-1023.	1.2	71
25	Genetic and pharmacologic inactivation of cannabinoid CB1 receptor inhibits angiogenesis. Blood, 2011, 117, 5541-5550.	0.6	70
26	Development of New Drugs in Angiogenesis. Current Drug Targets, 2004, 5, 485-493.	1.0	70
27	The natural compound n-butylidenephthalide derived from the volatile oil of Radix Angelica sinensis inhibits angiogenesis in vitro and in vivo. Angiogenesis, 2011, 14, 187-197.	3.7	69
28	Cell-Mediated Delivery of Fibroblast Growth Factor-2 and Vascular Endothelial Growth Factor onto the Chick Chorioallantoic Membrane: Endothelial Fenestration and Angiogenesis. Journal of Vascular Research, 2001, 38, 389-397.	0.6	66
29	N-myc oncogene overexpression down-regulates IL-6; evidence that IL-6 inhibits angiogenesis and suppresses neuroblastoma tumor growth. Oncogene, 2002, 21, 3552-3561.	2.6	65
30	Hepatocyte Growth Factor and Inducible Nitric Oxide Synthase Are Involved in Multidrug Resistance–Induced Angiogenesis in Hepatocellular Carcinoma Cell Lines. Cancer Research, 2006, 66, 2673-2682.	0.4	60
31	Nanostructured HA crystals up-regulate FGF-2 expression and activity in microvascular endothelium promoting angiogenesis. Bone, 2007, 41, 523-534.	1.4	58
32	Angiosuppressive and angiostimulatory effects exerted by synthetic partial sequences of endostatin. Clinical Cancer Research, 2003, 9, 5358-69.	3.2	57
33	Molecular regulation ofÂtumour angiogenesis byÂnitric oxide. European Cytokine Network, 2009, 20, 164-170.	1.1	55
34	Circulating Metabolites Originating from Gut Microbiota Control Endothelial Cell Function. Molecules, 2019, 24, 3992.	1.7	54
35	Protective effect of 4-coumaric acid from UVB ray damage in the rabbit eye. Toxicology, 2009, 255, 1-5.	2.0	53
36	Pharmacological inhibition of MAGL attenuates experimental colon carcinogenesis. Pharmacological Research, 2017, 119, 227-236.	3.1	53

#	Article	IF	CITATIONS
37	Role of Nitric Oxide in Tumor Angiogenesis. Cancer Treatment and Research, 2004, 117, 155-167.	0.2	53
38	Peroxynitrite inactivates humanâ€ŧissue inhibitor of metalloproteinaseâ€4. FEBS Letters, 2008, 582, 1135-1140.	1.3	49
39	Physiological levels of amyloid peptides stimulate the angiogenic response through FGFâ€2. FASEB Journal, 2004, 18, 1943-1945.	0.2	48
40	ERK1-2 and p38 MAPK regulate MMP/TIMP balance and function in response to thrombospondin-1 fragments in the microvascular endothelium. Life Sciences, 2004, 74, 2975-2985.	2.0	48
41	Prostaglandin E 2 Primes the Angiogenic Switch via a Synergic Interaction With the Fibroblast Growth Factor-2 Pathway. Circulation Research, 2009, 105, 657-666.	2.0	48
42	Sulfhydryl Angiotensin-Converting Enzyme Inhibitor Promotes Endothelial Cell Survival through Nitric-Oxide Synthase, Fibroblast Growth Factor-2, and Telomerase Cross-Talk. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 776-784.	1.3	39
43	H2S dependent and independent anti-inflammatory activity of zofenoprilat in cells of the vascular wall. Pharmacological Research, 2016, 113, 426-437.	3.1	38
44	The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis. Pharmacological Research, 2013, 76, 171-181.	3.1	37
45	Hydrocaffeic and <i>p</i> -coumaric acids, natural phenolic compounds, inhibit UV-B damage in WKD human conjunctival cells <i>in vitro</i> and rabbit eye <i>in vivo</i> . Free Radical Research, 2008, 42, 903-910.	1.5	36
46	The isoflavone metabolite 6-methoxyequol inhibits angiogenesis and suppresses tumor growth. Molecular Cancer, 2012, 11, 35.	7.9	36
47	Polyphenol-based nutraceuticals for the control of angiogenesis: Analysis of the critical issues for human use. Pharmacological Research, 2016, 111, 384-393.	3.1	36
48	Fibroblast Growth Factor-2 Mediates Angiotensin-Converting Enzyme Inhibitor-Induced Angiogenesis in Coronary Endothelium. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 515-522.	1.3	35
49	ALDH3A1 Overexpression in Melanoma and Lung Tumors Drives Cancer Stem Cell Expansion, Impairing Immune Surveillance through Enhanced PD-L1 Output. Cancers, 2019, 11, 1963.	1.7	33
50	The soluble guanylyl cyclase inhibitor NS-2028 reduces vascular endothelial growth factor-induced angiogenesis and permeability. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R824-R832.	0.9	31
51	Antiangiogenic Effectiveness of the Urokinase Receptor-Derived Peptide UPARANT in a Model of Oxygen-Induced Retinopathy. , 2015, 56, 2392.		31
52	Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. European Journal of Medicinal Chemistry, 2019, 162, 290-320.	2.6	31
53	A proangiogenic peptide derived from vascular endothelial growth factor receptor-1 acts through α5β1 integrin. Blood, 2008, 111, 3479-3488.	0.6	30
54	Synthesis of 1-(2-chloro-2-phenylethyl)-6-methylthio-1H-pyrazolo[3,4-d]pyrimidines 4-amino substituted and their biological evaluation. European Journal of Medicinal Chemistry, 2004, 39, 153-160.	2.6	29

#	Article	IF	CITATIONS
55	PKCε activation promotes FGF-2 exocytosis and induces endothelial cell proliferation and sprouting. Journal of Molecular and Cellular Cardiology, 2013, 63, 107-117.	0.9	28
56	Cu(II) and Zn(II) complexes with hyaluronic acid and its sulphated derivative. Journal of Inorganic Biochemistry, 2000, 81, 229-237.	1.5	27
57	An in Vitro Study on Tissue Repair: Impact of Unloading on Cells Involved in the Remodelling Phase. Microgravity Science and Technology, 2011, 23, 391-401.	0.7	27
58	Modeled Microgravity Affects Fibroblast Functions Related to Wound Healing. Microgravity Science and Technology, 2017, 29, 121-132.	0.7	27
59	Development of novel cyclic peptides as pro-apoptotic agents. European Journal of Medicinal Chemistry, 2016, 117, 301-320.	2.6	26
60	The Future of Personalized Medicine in Space: From Observations to Countermeasures. Frontiers in Bioengineering and Biotechnology, 2021, 9, 739747.	2.0	26
61	Comparison of the Effect of Two Hyaluronic Acid Preparations on Fibroblast and Endothelial Cell Functions Related to Angiogenesis. Cells, 2019, 8, 1479.	1.8	25
62	Pharmacological Inhibition of CA-IX Impairs Tumor Cell Proliferation, Migration and Invasiveness. International Journal of Molecular Sciences, 2020, 21, 2983.	1.8	25
63	Effect of Microgravity on Endothelial Cell Function, Angiogenesis, and Vessel Remodeling During Wound Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 720091.	2.0	25
64	Effect of Unloading Condition on the Healing Process and Effectiveness of Platelet Rich Plasma as a Countermeasure: Study on In Vivo and In Vitro Wound Healing Models. International Journal of Molecular Sciences, 2020, 21, 407.	1.8	24
65	The H2S-Donor Erucin Exhibits Protective Effects against Vascular Inflammation in Human Endothelial and Smooth Muscle Cells. Antioxidants, 2021, 10, 961.	2.2	24
66	The Effect of Space Travel on Bone Metabolism: Considerations on Today's Major Challenges and Advances in Pharmacology. International Journal of Molecular Sciences, 2021, 22, 4585.	1.8	22
67	Therapeutic Potential of Anti-Angiogenic Multitarget <i>N,O</i> -Sulfated <i>E. Coli</i> K5 Polysaccharide in Diabetic Retinopathy. Diabetes, 2015, 64, 2581-2592.	0.3	21
68	Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response. Scientific Reports, 2016, 6, 31295.	1.6	21
69	Cross-talk between endogenous H 2 S and NO accounts for vascular protective activity of the metal-nonoate Zn(PipNONO)Cl. Biochemical Pharmacology, 2018, 152, 143-152.	2.0	21
70	Targeting endothelial-to-mesenchymal transition: the protective role of hydroxytyrosol sulfate metabolite. European Journal of Nutrition, 2020, 59, 517-527.	1.8	21
71	Endothelium as a Source and Target of H2S to Improve Its Trophism and Function. Antioxidants, 2021, 10, 486.	2.2	21
72	Monitoring Endothelial and Tissue Responses to Cobalt Ferrite Nanoparticles and Hybrid Hydrogels. PLoS ONE, 2016, 11, e0168727.	1.1	21

5

#	Article	IF	CITATIONS
73	Protective Effects of Novel Metal-Nonoates on the Cellular Components of the Vascular System. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 500-509.	1.3	20
74	Targeting endothelial cell metabolism for cardio-protection from the toxicity of antitumor agents. Cardio-Oncology, 2016, 2, 3.	0.8	20
75	The effect of linomide on the migration and the proliferation of capillary endothelial cells elicited by vascular endothelial growth factor. British Journal of Pharmacology, 1996, 119, 619-621.	2.7	19
76	PKG-I inhibition attenuates vascular endothelial growth factor-stimulated angiogenesis. Vascular Pharmacology, 2010, 53, 215-222.	1.0	19
77	Endothelial cell migration is induced by soluble P-selectin. Life Sciences, 1997, 62, PL7-PL11.	2.0	18
78	Hypergravity affects morphology and function in microvascular endothelial cells. Microgravity Science and Technology, 2006, 18, 234-238.	0.7	18
79	Anti-hypertensive property of a nickel-piperazine/NO donor in spontaneously hypertensive rats. Pharmacological Research, 2016, 107, 352-359.	3.1	17
80	Efficacy of AdipoDren® in Reducing Interleukin-1-Induced Lymphatic Endothelial Hyperpermeability. Journal of Vascular Research, 2016, 53, 255-268.	0.6	17
81	Peptides derived from the histidine–proline rich glycoprotein bind copper ions and exhibit anti-angiogenic properties. Dalton Transactions, 2018, 47, 9492-9503.	1.6	17
82	The metal-nonoate Ni(SalPipNONO) inhibits <i>in vitro</i> tumor growth, invasiveness and angiogenesis. Oncotarget, 2018, 9, 13353-13365.	0.8	17
83	Calcitonin gene-related peptide selectively increases cAMP levels in the guinea-pig ureter. European Journal of Pharmacology, 1995, 289, 17-21.	2.7	16
84	Use of Nutraceuticals in Angiogenesis-Dependent Disorders. Molecules, 2018, 23, 2676.	1.7	16
85	A Non-Peptide NK1Receptor Agonist Showing Subpicomolar Affinity. Journal of Medicinal Chemistry, 2004, 47, 1315-1318.	2.9	15
86	Nitric Oxide Releasing Metal–Diazeniumdiolate Complexes Strongly Induce Vasorelaxation and Endothelial Cell Proliferation. ChemMedChem, 2008, 3, 1039-1047.	1.6	15
87	Endothelial Aldehyde Dehydrogenase 2 as a Target to Maintain Vascular Wellness and Function in Ageing. Biomedicines, 2020, 8, 4.	1.4	15
88	Cerebral Circulation Time is Prolonged and Not Correlated with EDSS in Multiple Sclerosis Patients: A Study Using Digital Subtracted Angiography. PLoS ONE, 2015, 10, e0116681.	1.1	14
89	Impaired Cerebral Perfusion in Multiple Sclerosis: Relevance of Endothelial Factors. Biomarker Insights, 2018, 13, 117727191877480.	1.0	14
90	Role of Calcium in Angiotensin II-Induced Prostaglandin Release and DNA Synthesis in Rat Vascular Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 1996, 27, 195-200.	0.8	14

#	Article	IF	CITATIONS
91	Effect of Hypergravity on Endothelial Cell Function and Gene Expression. Microgravity Science and Technology, 2009, 21, 135-140.	0.7	13
92	Effect of NIR laser therapy by MLS-MiS source against neuropathic pain in rats: in vivo and ex vivo analysis. Scientific Reports, 2019, 9, 9297.	1.6	13
93	How to conjugate the stemness marker ALDH1A1 with tumor angiogenesis, progression, and drug resistance. , 2020, 3, 26-37.		12
94	Distinct capillary density and progression promoted by vascular endothelial growth factor-A homodimers and heterodimers. Angiogenesis, 1997, 1, 117-130.	3.7	11
95	The Corneal Pocket Assay. Methods in Molecular Biology, 2009, 467, 319-329.	0.4	11
96	Physiological adaptations affecting drug pharmacokinetics in space: what do we really know? A critical review of the literature. British Journal of Pharmacology, 2022, 179, 2538-2557.	2.7	11
97	ALDH1A1 overexpression in melanoma cells promotes tumor angiogenesis by activating the IL‑8/Notch signaling cascade. International Journal of Molecular Medicine, 2022, 50, .	1.8	10
98	Influence of Circulating Endothelin-1 and Asymmetric Dimethylarginine on Whole Brain Circulation Time in Multiple Sclerosis. Biomarker Insights, 2017, 12, 117727191771251.	1.0	9
99	Effect of Carbonic Anhydrase IX inhibitors on human endothelial cell survival. Pharmacological Research, 2020, 159, 104964.	3.1	9
100	Nitric oxide modulates the angiogenic phenotype of middle-T transformed endothelial cells. International Journal of Biochemistry and Cell Biology, 2001, 33, 305-313.	1.2	8
101	Effect of NIR Laser Therapy by MLS-MiS Source on Fibroblast Activation by Inflammatory Cytokines in Relation to Wound Healing. Biomedicines, 2021, 9, 307.	1.4	8
102	The Corneal Pocket Assay. Methods in Molecular Biology, 2015, 1214, 15-28.	0.4	8
103	Therapeutic Potential of Nitric Oxide Donors in Cancer: Focus on Angiogenesis. Critical Reviews in Oncogenesis, 2016, 21, 447-458.	0.2	7
104	Involvement of Bradykinin B2 Receptor in Pathological Vascularization in Oxygen-Induced Retinopathy in Mice and Rabbit Cornea. International Journal of Molecular Sciences, 2018, 19, 330.	1.8	7
105	Therapeutic Implications of the Nitric Oxide Pathway in the Angiogenesis of Tumors and Inflammatory-Related Disorders. , 2019, , 65-91.		7
106	Characterization of the Safety Profile of Sweet Chestnut Wood Distillate Employed in Agriculture. Safety, 2021, 7, 79.	0.9	6
107	Neuronal effects of a nickel-piperazine/NO donor complex in rodents. Pharmacological Research, 2015, 99, 162-173.	3.1	5
108	The Rabbit Corneal Pocket Assay. Methods in Molecular Biology, 2016, 1430, 299-310.	0.4	5

#	Article	IF	CITATIONS
109	mPGES-1 as a new target to overcome acquired resistance to gefitinib in non-small cell lung cancer cell lines. Prostaglandins and Other Lipid Mediators, 2019, 143, 106344.	1.0	5
110	Molecular Mechanisms of Resistance to Anti-Angiogenic Drugs. Critical Reviews in Oncogenesis, 2021, 26, 39-66.	0.2	5
111	The Rabbit Corneal Pocket Assay for the Study of Angiogenesis. Cancer Treatment and Research, 2004, 117, 147-151.	0.2	5
112	Non-peptide NK1 receptor ligands based on the 4-phenylpyridine moiety. Bioorganic and Medicinal Chemistry, 2011, 19, 2242-2251.	1.4	4
113	Differential Contribution of Bradykinin Receptors in Angiogenesis. Advances in Experimental Medicine and Biology, 2000, 476, 117-128.	0.8	4
114	In Vitro and In Vivo Models to Study Chemokine Regulation of Angiogenesis. , 2004, 239, 223-232.		3
115	Molecular Mechanisms of VEGF-Induced Angiogenesis. , 2004, , 19-25.		2
116	Abolished angiogenicity and tumorigenicity of Burkitt lymphoma by interleukin-10. Blood, 2000, 96, 2568-2573.	0.6	2
117	I-309 binds to and activates endothelial cell functions and acts as an angiogenic molecule in vivo. Blood, 2000, 96, 4039-4045.	0.6	2
118	The Rat and the Rabbit Cornea Assay. , 1998, , 39-46.		1
119	[35] Determination of angiogenesis-regulating properties of NO. Methods in Enzymology, 2002, 352, 407-421.	0.4	1
120	Pharmacological Tools for the Study of H2S Contribution to Angiogenesis. Methods in Molecular Biology, 2019, 2007, 151-166.	0.4	1
121	Corneal Angiogenesis Assay. , 2004, , 263-272.		1
122	Studying Angiogenesis in the Rabbit Corneal Pocket Assay. Methods in Molecular Biology, 2021, 2206, 89-101.	0.4	1
123	Antiangiogenic drugs: Chemosensitizers for combination cancer therapy. , 2022, , 29-66.		1
124	Antitumor Effect of a Metal-Nonoate Through Angiogenesis Impairment. , 2019, , 59-64.		0
125	Design of Pharmacological and Diagnostic Strategies for Angiogenesis-Dependent Diseases. , 2002, , 517-526.		0
126	Corneal Pocket Assay. , 2012, , 285-304.		0

0

#	Article	IF	CITATIONS
127	Interaction of Neutrophils with Endothelial Cells, Fibroblasts and Their Extracellular Matrices: Microscopic and Computerised Analysis. ATLA Alternatives To Laboratory Animals, 1988, 16, 48-53.	0.7	0

128 General conclusions and future perspectives. , 2022, , 241-260.